首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   2篇
地球物理   8篇
地质学   3篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  1996年   1篇
  1993年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
江苏药用矿物资源初探   总被引:3,自引:0,他引:3  
钟启宝 《江苏地质》1996,20(3):177-180
江苏拥有丰富的药用矿物资源,大部分药用矿物均有产出。通过对药用矿物的分类,阐述了药用矿物的治疗机理和各自的实际功能。方位 为:江苏药有矿物资源的合理开发,不仅能为人类健康服务,而且也能产生可观的经济效益。  相似文献   
2.
以往整治滑坡,较多地使用大口径挖孔桩或钻孔灌注抗滑桩,周期长、成本高。川地208队在治理重庆制药五厂已处于危急态势的滑坡中,采用“天平式”控制、勘治结合、快速抢险,用三排小径密抗桩(300mm口径)整治,取得明显成效。实践表明:浅层滑坡采用较小口径的密抗桩,并辅以排水,能达到事半功倍的效果。  相似文献   
3.
4.
5.
Laboratory‐scale batch experiments were conducted to investigate the adsorption behavior of eight fluoroquinolones (FQs) on aerobic, anoxic, and anaerobic sludge, under different adsorpiton time, pH, and temperature conditions. Results indicated that adsorption of FQs onto all sludge was a physical sorption process. The relationship of the partitioning coefficient (Kd) and the octanol/water partition coefficient (Kow) for each FQ was established. The adsorbed fraction of FQs on sludge could then be predicted with the Kd. It was calculated that about 50–72% of the FQs were adsorbed on the sludge. Therefore, the adsorption effect must be considered when studying the fate and occurrence of FQs in wastewater treatment systems.  相似文献   
6.
Multiple chemical constituents (nutrients; N, O, H, C stable isotopes; 64 organic wastewater compounds, 16 pharmaceutical compounds) and microbiological indicators were used to assess the impact on groundwater quality from the land application of approximately 9.5 million liters per day of treated municipal sewage effluent to a sprayfield in the 960-km2 Ichetucknee Springs basin, northern Florida. Enriched stable isotope signatures (δ18O and δ2H) were found in water from the effluent reservoir and a sprayfield monitoring well (MW-7) due to evaporation; however, groundwater samples downgradient from the sprayfield have δ18O and δ2H concentrations that represented recharge of meteoric water. Boron and chloride concentrations also were elevated in water from the sprayfield effluent reservoir and MW-7, but concentrations in groundwater decreased substantially with distance downgradient to background levels in the springs (about 12 km) and indicated at least a tenfold dilution factor. Nitrate-nitrogen isotope (δ15N–NO3) values above 10 ‰ in most water samples were indicative of organic nitrogen sources except Blue Hole Spring (δ15N–NO3 = 4.6–4.9 ‰), which indicated an inorganic source of nitrogen (fertilizers). The detection of low concentrations the insect repellent N,N-diethyl-metatoluamide (DEET), and other organic compounds associated with domestic wastewater in Devil’s Eye Spring indicated that leakage from a nearby septic tank drainfield likely has occurred. Elevated levels of fecal coliforms and enterococci were found in Blue Hole Spring during higher flow conditions, which likely resulted from hydraulic connections to upgradient sinkholes and are consistent with previoius dye-trace studies. Enteroviruses were not detected in the sprayfield effluent reservoir, but were found in low concentrations in water samples from a downgradient well and Blue Hole Spring during high-flow conditions indicating a human wastewater source. The Upper Floridan aquifer in the Ichetucknee Springs basin is highly vulnerable to contamination from multiple anthropogenic sources throughout the springs basin.  相似文献   
7.
This study presents the influence of the addition of additives such as activated carbon, carbon tetra chloride, hydrogen peroxide, and potassium dichromate on ultrasonic reduction of pharmaceutical wastewater chemical oxygen demand (COD) under laboratory conditions. The addition of activated carbon increased the % COD reduction whereas the combined addition of activated carbon and H2O2/CCl4/K2Cr2O7 was found to show higher reduction. Among the various combinations investigated, the combined addition of activated carbon and CCl4 was found to be the best combination. However, the environmental and health problems associated with these chemicals limit the applicability of the process in an industrial level. Further investigation with this system showed that the initial pH and initial COD have significant influence on the removal rate. The data obtained were fitted with first order and Langmuir–Hinshelwood kinetic models. The values of the rate constants obtained indicated that the pharmaceutical wastewater can be treated efficiently by the proposed methods.  相似文献   
8.
In this study the occurrence of diclofenac and sub‐products in effluent emerging from the University Hospital at the Federal University of Santa Maria was investigated. One metabolite was identified and, in aqueous solution, three degradation products. The quantification was conducted by means of HPLC‐DAD, and the determination of metabolite and degradation products by LC–ESI–MS/MS–QTrap. For the HPLC‐DAD method, a 70:30 mixture of methanol/sodium phosphate was used in isocratic mode. For the LC–ESI–MS/MS–QTrap determinations, a mobile phase, where phase A was an ammonium acetate solution 5 × 10?3 mol L?1, and phase B was methanol (5 × 10?3 mol L?1)/ammonium acetate (9:1, v/v), on gradient mode. The LDs for the HPLC and LC–MS/MS methods, respectively, were 2.5 and 0.02 µg L?1, the LQs, 8.3 and 0.05 µg L?1, and the linear range from 10 up to 2000 µg L?1 and 0.05 up to 10 µg L?1. As expected, the LC–ESI–MS/MS–QTrap method was more sensitive and less laborious. The metabolite 4′‐hydroxy‐diclofenac was identified. Photolysis was used for the degradation studies and three products of diclofenac were identified (m/z of 214, 286 and 303) in aqueous solution. These results notwithstanding, no degradation products of diclofenac were found in the hospital effluent.  相似文献   
9.
10.
Much attention has recently been devoted to the fate and effects of pharmaceuticals in the water cycle. Removal of antibiotics in effluents by photo‐treatment or biodegradation is a topic currently under discussion. Degradation and removal efficiencies of sulfisomidine (SUI) by photodegradation and aerobic biodegradability were studied. SUI behavior was monitored during photolysis and photocatalysis (catalyst titanium dioxide) using 150‐W medium‐pressure Hg lamp. Also an aerobic bacterial degradation test from the OECD series (closed bottle test (CBT, OECD 301 D)) was performed. The primary elimination of SUI was monitored. Structures of photo‐degradation products were assessed by chromatographic separation on a C18 column with ultraviolet detection at 270 nm and ion trap MS. The results demonstrate that SUI is not readily biodegradable in CBT. Photo catalysis was more is effective than photolysis. SUI underwent photodegradation and several SUI photoproducts were identified. Accordingly, the photodegradation pathway of SUI was postulated. When reaching the aquatic environment, SUI and its photo products can constitute a risk to the environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号