首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   4篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
In this paper, we document the evolution of the emergent Panarea dome in the Aeolian islands (Southern Italy), placing particular emphasis on the reconstruction of the explosive events that occurred during the final stage of its evolution. Two main pyroclastic successions exposing fall deposits with different compositions have been studied into detail: the andesitic Palisi succession and the basaltic Punta Falcone succession. The close-in-time deposition of the two successions, the dispersal area and grain-size distribution of the deposits account for their attribution to vents located in the western sector of the present island and erupting almost contemporaneously. Vents could have been aligned along NNE-trending regional fracture systems controlling the western flank of the dome and possibly its collapse. Laboratory analyses have been devoted to the characterization of the products of the two successions that have been ascribed to vulcanian- and to strombolian-type eruptions respectively. The vulcanian eruption started with a vent-clearing phase that occurred by sudden decompression of a pressurized magma producing ballistic bombs and a surge blast and the development of a vulcanian plume. Vulcanian activity was almost contemporaneous to strombolian-type fall-out eruptions. The coeval occurrence of basaltic and andesitic eruptions from close vents and the presence of magmatic basaltic enclaves in the final dacitic lava lobe of the dome allow us to speculate that the intrusion of a basaltic dyke played a major role in triggering explosive eruptions. The final explosive episodes may have been caused by extensional tectonics fracturing the roof of a zoned shallow magma chamber or by the intrusion of a new basaltic magma into a more acidic and shallow reservoir. Intrusion most likely occurred through the injection of dykes along the western cliff of the present Panarea Island inducing the collapse of the western sector of the dome.  相似文献   
2.
3.
A series of raised palaeoshorelines is documented along the emergent coastal slopes of Panarea and surrounding islets at elevations of 115 (palaeoshoreline Ia) and 100 m a.s.l. (Ib), 62.5 m (II), 35 m (III), 12 m (IV), 10–12 (Va) and 5 m (Vb). According to stratigraphic constraints and cross-cutting relationships, these palaeoshorelines are correlated with discrete high sea-level stillstands during marine oxygen-isotope stages (MIS) 5e, 5c, 5a and 3. Coastal elevation changes suggest the occurrence of a long-term, sustained uplift trend of the volcanic edifice since the last interglacial (last 124 ka). The uplift rates are not constant but display a progressive deceleration from maximum values of 1.5–1.58 m/ka, in the period between 124 and 100 ka, down to the lowest values of 0.66–0.69 m/ka, which tend to be constant starting from 81 ka BP. The long-term deformation pattern of Panarea suggests that a transitory, volcano-related component of uplift interplayed with the regional tectonic component affecting the sub-volcanic basement, which has undergone a persistent and widespread uplift since the mid-Pleistocene. The volcano-related component of uplift, prevailing between 124 and 100–81 ka, is interpreted as the result of visco-elastic deformation mechanisms which characterize the progressive re-equilibration of the shallow magmatic system following the incoming quiescence of the volcanic edifice. The long-term uplift values at Panarea are higher than in the main portion of the western-central Aeolian Arc, where a mean uplift rate of 0.34 m/ka was estimated since the last interglacial (last 124 ka). Such a pattern of deformation on a regional scale may be a response to active deformation processes connected with the southeastward rollback of the subducting Ionian slab which is still active only in correspondence with the eastern sector of the Aeolian Arc (including Panarea). In the short-term, a localized submergence trend has been documented at the nearby islet of Basiluzzo for the last 2,000 years, likely connected to neo-tectonic movements along main NE–SW trending faults.  相似文献   
4.
Ash-rich tephra layers interbedded in the pyroclastic successions of Panarea island (Aeolian archipelago, Southern Italy) have been analyzed and related to their original volcanic sources. One of these tephra layers is particularly important as it can be correlated by its chemical and morphoscopic characteristics to the explosive activity of Somma-Vesuvio. Correlation with the Pomici di Base eruption, that is considered one of the largest explosive events causing the demolition of the Somma stratovolcano, seems the most probable. The occurrence on Panarea island of fine ashes related to this eruption is of great importance for several reasons: 1) it allows to better constrain the time stratigraphy of the Panarea volcano; 2) it provides a useful tool for tephrochronological studies in southern Italy and finally 3) it allows to improve our knowledge on the distribution of the products of the Pomici di Base eruption giving new insights on the dispersion trajectories of fine ashes from plinian plumes. Other exotic tephra layers interbedded in the Panarea pyroclastic successions have also been found. Chemical and sedimentological characteristics of these layers allow their correlation with local vents from the Aeolian Islands thus constraining the late explosive activity of Panarea dome.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号