首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   2篇
  2020年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
This study investigated the concentrations and distribution of Perfluoroalkyl and polyfluoroalkyl substances (PFAS) in sediments of 12 rivers from South Bohai coastal watersheds. The highest concentrations of ΣPFAS (31.920 ng g1 dw) and PFOA (29.021 ng g1 dw) were found in sediments from the Xiaoqing River, which was indicative of local point sources in this region. As for other rivers, concentrations of ΣPFAS ranged from 0.218 to 1.583 ng g1 dw were found in the coastal sediments and from 0.167 to 1.953 ng g1 dw in the riverine sediments. Predominant PFAS from coastal and riverine areas were PFOA and PFBS, with percentages of 30% and 35%, respectively. Partitioning analysis showed the concentrations of PFNA, PFDA and PFHxS were significantly correlated with organic carbon. The results of a preliminary environmental hazard assessment showed that PFOS posed the highest hazard in the Mi River, while PFOA posed a relative higher hazard in the Xiaoqing River.  相似文献   
2.
Emerging groundwater contaminants such as per- and polyfluoroalkyl substances (PFAS) may impact surface-water quality and groundwater-dependent ecosystems of gaining streams. Although complex near-surface hydrogeology of stream corridors challenges sampling efforts, recent advances in heat tracing of discharge zones enable efficient and informed data collection. For this study, we used a combination of streambed temperature push-probe and thermal infrared methods to guide a discharge-zone-oriented sample collection along approximately 6 km of a coastal trout stream on Cape Cod, MA. Eight surface-water locations and discharging groundwater from 24 streambed and bank seepages were analysed for dissolved oxygen (DO), specific conductance, stable water isotopes, and a range of PFAS compounds, which are contaminants of emerging concern in aquatic environments. The results indicate a complex system of groundwater discharge source flowpaths, where the sum of concentrations of six PFAS compounds (corresponding to the U.S. Environmental Protection Agency third Unregulated Contaminant Monitoring Rule “UCMR 3”) showed a median concentration of 52 ± 331 (SD) ng/L with two higher outliers and three discharges with PFAS concentrations below the quantification limit. Higher PFAS concentration was related (− 0.66 Spearman rank, p < .001) to discharging groundwater that showed an evaporative signature (deuterium excess), indicating flow through at least one upgradient kettle lake. Therefore, more regional groundwater flowpaths originating from outside the local river corridor tended to show higher PFAS concentrations as evaluated at their respective discharge zones. Conversely, PFAS concentrations were typically low at discharges that did not indicate evaporation and were adjacent to steep hillslopes and, therefore, were classified as locally recharged groundwater. Previous research at this stream found that the native brook trout spawn at discharge points of groundwater recharged on local hillslopes, likely in response to generally higher levels of DO. Our study shows that by targeting high oxygen discharges the trout may thereby be avoiding emerging contaminants such as PFAS in groundwater recharged farther from the stream.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号