首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   493篇
  免费   100篇
  国内免费   263篇
测绘学   4篇
地球物理   75篇
地质学   720篇
海洋学   29篇
综合类   14篇
自然地理   14篇
  2024年   3篇
  2023年   6篇
  2022年   19篇
  2021年   21篇
  2020年   23篇
  2019年   23篇
  2018年   27篇
  2017年   27篇
  2016年   35篇
  2015年   34篇
  2014年   31篇
  2013年   39篇
  2012年   42篇
  2011年   18篇
  2010年   22篇
  2009年   26篇
  2008年   27篇
  2007年   35篇
  2006年   42篇
  2005年   43篇
  2004年   47篇
  2003年   34篇
  2002年   19篇
  2001年   29篇
  2000年   52篇
  1999年   21篇
  1998年   15篇
  1997年   14篇
  1996年   9篇
  1995年   14篇
  1994年   16篇
  1993年   13篇
  1992年   6篇
  1991年   4篇
  1990年   7篇
  1989年   1篇
  1988年   5篇
  1987年   2篇
  1986年   4篇
  1983年   1篇
排序方式: 共有856条查询结果,搜索用时 15 毫秒
1.
The structure, functioning and hydrodynamic properties of aquifers can be determined from an analysis of the spatial variability of baseflow in the streams with which they are associated. Such analyses are based on simple low‐cost measurements. Through interpreting the hydrological profiles (Q = f(A)) it is possible to locate the aquifer(s) linked to the stream network and to determine the type of interrelated flow, i.e. whether the stream drains or feeds the aquifer. Using an analytical solution developed for situations with a positive linear relationship, i.e. where the baseflow increases linearly with increasing catchment size, it is also possible to estimate the permeability of the aquifer(s) concerned at catchment scale. Applied to the hard‐rock aquifers of the Oman ophiolite, this method shows that the ‘gabbro’ aquifer is more permeable than the ‘peridotite’ aquifer. As a consequence the streams drain the peridotites and ‘leak’ into the gabbro. The hydrological profiles within the peridotite are linear and positive, and indicate homogeneity in the hydrodynamic properties of these formations at the kilometre scale. The permeability of the peridotite is estimated at 5 · 10?7 to 5 · 10?8 m/s. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
2.
The Limousin ophiolite is located at the suture zone between two major thrust sheets in the western French Massif Central. This ophiolitic section comprises mantle‐harzburgite, mantle‐dunite, wehrlites, troctolites and layered gabbros. It has recorded a static metamorphic event transforming the gabbros into undeformed amphibolites and the magmatic ultramafites into serpentinites and/or pargasite‐bearing chloritites. With various thermobarometric methods, it is possible to show that the different varieties of amphibole have registered low‐P (c. 0.2 GPa) conditions with temperature ranging from high‐T, late‐magmatic conditions to greenschist–zeolite metamorphic facies. The abundance of undeformed metamorphic rocks (which is typical of the lower oceanic crust), the occurrence of Ca–Al (–Mg) metasomatism illustrated by the growth of Ca–Al silicates in veins or replacing the primary magmatic minerals, the PT conditions of the metamorphism and the numerous similarities with oceanic crustal rocks from Ocean Drilling Program and worldwide ophiolites are the main arguments for an ocean‐floor hydrothermal metamorphism in the vicinity of a palaeo‐ridge. Among the West‐European Variscan ophiolites, the Limousin ophiolites constitute an extremely rare occurrence that has not been involved in any HP (subduction‐related) or MP (orogenic) metamorphism as observed in other ophiolite occurrences (i.e. France, Spain and Germany).  相似文献   
3.
We present a detailed, new time scale for an orogenic cycle (oceanic accretion–subduction–collision) that provides significant insights into Paleozoic continental growth processes in the southeastern segment of the long-lived Central Asian Orogenic Belt (CAOB). The most prominent tectonic feature in Inner Mongolia is the association of paired orogens. A southern orogen forms a typical arc-trench complex, in which a supra-subduction zone ophiolite records successive phases during its life cycle: birth (ca. 497–477 Ma), when the ocean floor of the ophiolite was formed; (2) youth (ca. 473–470 Ma), characterized by mantle wedge magmatism; (3) shortly after maturity (ca. 461–450 Ma), high-Mg adakite and adakite were produced by slab melting and subsequent interaction of the melt with the mantle wedge; (4) death, caused by subduction of a ridge crest (ca. 451–434 Ma) and by ridge collision with the ophiolite (ca. 428–423 Ma). The evolution of the magmatic arc exhibits three major coherent phases: arc volcanism (ca. 488–444 Ma); adakite plutonism (ca. 448–438 Ma) and collision (ca. 419–415 Ma) of the arc with a passive continental margin. The northern orogen, a product of ridge-trench interaction, evolved progressively from coeval generation of near-trench plutons (ca. 498–461 Ma) and juvenile arc crust (ca. 484–469 Ma), to ridge subduction (ca. 440–434 Ma), microcontinent accretion (ca. 430–420 Ma), and finally to forearc formation. The paired orogens followed a consistent progression from ocean floor subduction/arc formation (ca. 500–438 Ma), ridge subduction (ca. 451–434 Ma) to microcontinent accretion/collision (ca. 430–415 Ma); ridge subduction records the turning point that transformed oceanic lithosphere into continental crust. The recognition of this orogenic cycle followed by Permian–early Triassic terminal collision of the CAOB provides compelling evidence for episodic continental growth.  相似文献   
4.
西藏东巧蛇绿岩中辉长岩锆石SHRIMP定年及其地质意义   总被引:9,自引:0,他引:9  
东巧蛇绿岩位于分割羌塘地块和拉萨地块的班公湖—怒江缝合带中段,是该带最著名的产铬铁矿床的蛇绿岩残片之一。该蛇绿岩遭受构造肢解,恢复后的蛇绿岩剖面各岩石单元齐全。本文应用SHRIMPⅡ锆石UPb法,对东巧蛇绿岩中堆晶辉长岩进行了测年,获得辉长岩年龄为187.8±3.7 Ma。该年龄代表了东巧洋盆的形成时代,为确定研究区特提斯洋盆的古构造格局及其发育演化过程等提供了重要的年代学制约。  相似文献   
5.
采用锆石SHRIMP U-Pb同位素定年方法,获得新甘交界红柳河蛇绿岩中的堆晶辉长岩年龄为516.2±7.1Ma,代表了红柳河蛇绿岩的形成年龄;侵入到红柳河蛇绿岩中未变形变质的黑云母花岗岩的年龄为404.8±5.2Ma,限定了红柳河蛇绿岩侵位的上限。作为南天山洋壳的残骸,红柳河蛇绿岩新的可靠年龄数据表明,南天山洋在早寒武世已经开始形成,并于早泥盆世埃姆斯阶之前在红柳河地区已经闭合。上述洋盆演化过程对进一步研究东天山的大地构造演化具有重要的意义。  相似文献   
6.
蛇绿岩中的辉绿岩岩墙是洋脊扩张的产物.其形成年龄代表了扩张事件的时间,也代表了蛇绿岩的形成时代?对雅鲁藏布江缝合带西段拉昂错蛇绿岩中的辉绿岩岩墙进行锆石SHRIMPU—Pb定年,得出加权平均年龄为120.2Ma±2.3Ma,代表辉绿岩的结晶年龄。结合已有的关于雅鲁藏布江蛇绿岩的形成年龄(西段休古嘎布122.3Ma±2.4Ma,中段大竹卡126.0Ma±1.5Ma、吉定123.0Ma+_1.8Ma,东段罗布莎162.9Ma±2.8Ma)的报道,表明拉昂错地区特提斯洋海底扩张的时代与体古嘎布地区一致.雅鲁藏布江西段与中段地区洋盆的形成时代一致,但晚于东段的发育时代。这意味着整个东提斯洋盆的发育时代存在东早西晚的特点。  相似文献   
7.
The Eastern Flank Hydrocarbon Province borders the southeastern edge of the South Oman Salt Basin in the southern part of Oman. An intensive exploration programme by PDO over the past seven years has led to the discovery of almost 2 × 109 m3 of oil with current production of some 15000 m3/d from six fields.In stark contrast to other oil habitats of the Arabian Peninsula, the main play involves rock units and geological events ranging in age from Late Precambrian to Quaternary Times, while trap development and charging are closely related to syn-tectonic salt dissolution.The principal reservoirs and seals are poorly consolidated, Palaeozoic clastics which drape, due to salt dissolution, over residual ‘cores’ principally composed of either Lower Palaeozoic sandstones (Haima Group), or Late Proterozoic carbonates (Huqf Group), or some combination of these. Oils have been geochemically correlated with algal source rocks of the Huqf Eastern Flank. Structures are considered to have been ‘charged’ from Late Mesozoic times onwards in conjunction with progressive subsurface salt removal and the onset of maturation of local source rocks. The effectiveness of ‘charging’ along the retreating salt edge is indicated by the small percentage of dry wells.Major oil zones are found in both anticlinal and truncation traps which are commonly developed around sandstone (Haima Group) cores. Oils show a wide range of characteristics but are typically heavy, early expulsion crudes, high sulphur with little associated gas. Bacterial transformation is not uncommon.Producing reservoirs mainly occur at relatively shallow depths (600–1200 m). Primary recovery factors of around 7% reflect the high density and viscosity of the Eastern Flank crudes and have initiated interest in Enhanced Oil Recovery (EOR) techniques. Two such pilot projects, involving steam and polymer flooding, are due to commence in 1984 and, if successful, will substantially increase the reserve base of these fields.  相似文献   
8.
Metalliferous and pelagic sediments are exposed within and above the extrusive successions of the Upper Cretaceous Oman ophiolite which, on the basis of mostly geochemical evidence, is believed to have formed in an incipient marginal basin setting located above a NE-dipping subduction zone. The ophiolitic extrusives document various volcano-tectonic settings which include the axial zones of a spreading ridge, fault-controlled seamounts and off-axis volcanic edifices. Most of the Fe, Mn and trace metal-enriched sediments studied are interpreted as precipitates formed by oxidation of solutions derived from high-temperature sulphide-precipitating vents. The trace element content (e.g. REE and Sr) was largely scavenged from seawater. The sediments are similar to the dispersed metalliferous sediments on the flanks of modern spreading ridges, and the ‘basal’ sediments of DSDP wells and of other ophiolite complexes (e.g. Troodos, Cyprus).Distinctive mound structures located low in the lavas are attributed to percolation of sulphide-rich solutions into already deposited metalliferous oxide sediments. The resulting iron-silica rock was probably originally precipitated as ferruginous silicates.Major massive sulphides formed off-axis at the base of intermediate-basic edifices of volcanic arc affinities. Fe, Mn and trace metal enrichment in the sediment cover of a flat-topped seamount of axial lavas is interpreted as a dispersion halo around the largest massive sulphide orebody which is situated 5 km away (Lasail). Small massive sulphide bodies are common in the axial lavas particularly along major seafloor fault zones. The metalliferous sediments, locally precipitated near these vents, are ferromanganiferous, but trace metal-depleted.The metalliferous and pelagic sediment cover of the extrusive successions, generally, documents waning hydrothermal input after volcanism ended in the area.A model is discussed in which the ophiolite was created at a spreading axis above a subduction zone dipping away from the Arabian continental margin. With progressive subduction this crust approached the margin. Initially, calcareous sediment accumulated above the calcite compensation depth (CCD), but then non-calcareous radiolarites were deposited as the ophiolitic crust approached the continental margin where the CCD was higher and marginal upwelling possibly enhanced productivity. As the edge of the Arabian continental margin entered the trench, the over-riding ophiolite was regionally uplifted allowing short-lived chalk accumulation above the CCD. This was followed by volcaniclastic deposition related to the tectonic emplacement.  相似文献   
9.
四川德格错阿金矿特征与矿床成因初析   总被引:2,自引:0,他引:2  
错阿金矿床赋存于理塘义敦群上三叠统瓦能组变基性火山岩中,金矿体受次级北北西-近南北向韧性-脆韧性剪切变质带控制,与金矿化有关蚀变主要为黄铁矿化、辉锑矿化和硅化、碳酸盐化、金云母化及石墨化。矿床成因为蚀变构造型。甘孜-理塘断裂带北段嗄拉、错阿、海子口三个矿化集中区内大部份化探异常具有面积大、强度高、梯度变化大、元素组合好等特点,具有很好的找矿前景。  相似文献   
10.
Compilation of some new data on ophiolites for Greece and Yugoslavia, and published data from previous studies, indicate that platinum-group element (PGE) and gold concentrations in chromite ores are generally low, ranging from less than 100 ppb to a few hundred ppb. However, samples from several ophiolite complexes exhibit an enrichment (of a few ppm) (a) only in Os, Ir and Ru,(b) only in Pt and/or Pd or (c) in all PGE. This enrichment (up to 10s ppm) is mainly related with chromitites hosted in supra-Moho dunites and dunites of the uppermost stratigraphic levels of the mantle sequence and it seems to be local, independent of the chromitite major element composition and the chromite potential of the ophiolite complexes. The contents of PGE combined with less chalcophile elements (Ni, Co, Cu), the ratios of incompatible/compatible elements, and PGE-patterns provide evidence for discrimination between chromitites derived from primitive magmas and those derived from partially fractionated magmas, although they have a similar major element composition. Thus, they can be used for a stratigraphic orientation in the mantle sequence, and therefore for exploration targets. Moreover, PGE data offer valuable information for the evaluation of the chromite potential in ophiolite complexes. The most promising ophiolites seem to be those which apart from the petrological and geochemical characteristics indicating extensive degree of partial melting in the mantle source contain only one chromite ore type (the other type being only in small proportion) of limited compositional variation, in both major elements and PGE, low ratios of , while PGE-enriched chromitites in the mantle sequence are only occasionally present. In contrast, ophiolites which contain both high-Cr and -Al chromitites, and where their chalcophile element data implies relatively extensive fractionation trend are not good exploration targets for chromite ores, although they are related with a SSZ environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号