首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   20篇
  国内免费   13篇
测绘学   1篇
大气科学   7篇
地球物理   48篇
地质学   70篇
海洋学   73篇
综合类   1篇
自然地理   10篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   6篇
  2018年   6篇
  2017年   10篇
  2016年   11篇
  2015年   9篇
  2014年   10篇
  2013年   16篇
  2012年   6篇
  2011年   11篇
  2010年   15篇
  2009年   17篇
  2008年   14篇
  2007年   15篇
  2006年   8篇
  2005年   6篇
  2004年   2篇
  2003年   4篇
  2002年   5篇
  2001年   4篇
  2000年   11篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1985年   2篇
  1983年   1篇
排序方式: 共有210条查询结果,搜索用时 15 毫秒
1.
Despite the severity of tropical cyclone ‘Winifred’, which crossed the Great Barrier Reef on 1 February 1986, there were little long-term effects on lagoon surface sediments from reefs in its path. Short-term effects were apparent only at one particularly exposed area. These were: an increase in proportion of the coarse fraction, the establishment of sand ripples, and the destruction of the mounds produced by callianassid shrimps (normally the dominant topographic feature). Within six weeks this area was indistinguishable from a typical reef lagoon. This is probably the result of sediment reworking by callianassid shrimp, involving selective burial of the coarse fragments and transport to the surface of finer particles. Sediment turnover rates by callianassids are commensurate with change to the sediment within the relatively short period observed. The sediment fauna responded quickly to the changes in sediment type. Immediately after the cyclone the disturbed area supported a fauna typical of the coarse sediments on the shallow reef flat, as the sediment reverted to a more normal type so the fauna changed back to that typical of a reef lagoon.  相似文献   
2.
Syn-magmatic removal of the cumulate pile during the formation of the Bushveld Complex resulted in “potholes”. Erosion progressed downward in the cumulate pile, resulting in a series of steep, transgressive contacts between locally conformable potholed reefs in the regional pothole sub-facies of the Swartklip Facies in the western limb of the Bushveld Complex. The deepest of these potholes, “third-order” or “FWP2” potholing, occurs where the base of the Merensky Cyclic Unit transgresses the Upper Pseudo-Reef Chromitite marker horizon. The base of a FWP2 pothole on Northam Platinum Mine consists of an unconformable stringer Merensky Chromitite overlain by a medium-grained, poikilitic orthopyroxenite and underlain by either a pegmatitic harzburgite or the medium-grained Lower Pseudo-Reef Anorthosite. Detailed shape and distribution analysis of FWP2 potholes reveals underlying patterns in their shape and distribution which, in turn, suggest a structural control. The ratio between pothole short vs long axes is 0.624 (N=1,385), although the ratio increases from 0.48 to 0.61 in the long axis range 10 to 60 m, then decreases from 0.61 to 0.57 from 61 to 100 m, increasing again from 0.57 to 0.61 from 101 to 400 m, suggesting that there is not a simple relationship between pothole shape and size. Shape (circularity, eccentricity, and dendricity) analysis of a subset of 638 potholes indicates that potholes with long axes <100 m have an elliptical, average normalized shape, elongate on a 120–150° orientation. Potholes with long axis lengths >100 m have an average normalized shape that is bilobate and elongate on a 120° orientation. The average aspect ratio (short axis length divided by long axis length) of potholes is highest for potholes with long axis lengths >100 m and lowest for potholes with long axis lengths between 35 and 60 m. The most common long axis orientation for potholes with long axis lengths <100 m is 150° but 120° for long axis lengths >100 m. Fractal analysis indicates that the distribution of pothole centers is controlled neither by a single nor several interacting fractal dimensions. Autocorrelation (Fry) analysis of the distribution of pothole centers shows recurring pothole distribution trends at 038, 070, and 110° for potholes over the full range of long axis lengths, while the trends of 008 and 152° occur in potholes with long axes lengths between 60 and 100 m. Chi-squared (X 2) analysis of the locations of pothole centers suggests that the distribution of small potholes is highly non-uniform but becomes exponentially more uniform with increasing pothole size. The model which best fits the observed shape and distribution analysis is a combination of protracted independent growth and “nearest neighbor” merging along specific orientations. For instance, the clustered distribution of original pothole centers resulted in merged potholes with long axes lengths of up to 60 m, exhibiting short vs long axes ratios of 0.61, preferred orientations of 150°, and alignment along 010 and 150° trends. Further independent growth allowed for merging of similar-sized (and smaller) neighboring potholes, generating potholes with long axes of up to 100 m in length, a preferred long axis orientation of 150°, and alignment along 010, 040, 075, and 150°. Subsequent preferential merging occurred along a 120° trend, thereby preserving a bilobate form. This implies that while pothole initiation and enlargement may be driven by a “top-down” (i.e., possibly thermomechanical) process, an underlying linear or structural catalyst/control is revealed in changes in pothole shape during enlargement and, furthermore, in the preferred trends along which potholes merged over a considerable period, possibly concomitant with adjustment of major structures in the footwall to the Bushveld Complex and pulses into the magma chamber.  相似文献   
3.
Possible refugia for reefs in times of environmental stress   总被引:2,自引:0,他引:2  
This paper investigates the refuge potential of (1) upwelling areas, (2) coral areas at medium depth, and (3) offshore bank and island reefs in a scenario of increased global warming, and thus increased sea surface temperature (SST) and increased solar UV radiation. (1) Observations on coral health and water temperature in the subtropical Atlantic (Eleuthera and Cat Island, Bahamas) and Indian Ocean (Sodwana Bay, South Africa) suggest a link between cool water delivered by upwelling and coral health. After the 1998 bleaching event, caused by strong SST anomalies, coral health and recovery from the previous year's bleaching was significantly better on the narrow southern Cat Island shelf (70% of corals healthy) where the presence of cold water was observed, which was attributed to small-scale upwelling, than on the wide northern Eleuthera shelf (44% of corals healthy), where downwelling of hot bank waters was believed to have damaged corals. In South Africa, regular, short-term upwelling events in five summers reduced SST to well below bleaching level. (2) In the northern Red Sea (Safaga Bay) and in South Africa (Sodwana Bay), wide areas with either coral frameworks or non-framework communities exist. Calculations show that if the top 10 m (20 m) of the ocean became inhospitable to corals, still 50.4% (17.5%) of the coral area would remain intact in the Red Sea and 99% (40%) in South Africa. (3) Offshore bank and island reefs investigated in the Turks, Caicos, and Mouchoir Banks and Grand and Little Cayman showed high rates of mortality and coral diseases. The most remote sites (Mouchoir Bank) were not the healthiest. Refuge areas appear to exist in (1) and (2), but in (3) only if vigorous water-circulation is encountered.  相似文献   
4.
A high resolution (3–8 km grid), 3D numerical ocean model of the West Caribbean Sea (WCS) is used to investigate the variability and the forcing of flows near the Meso-American Barrier Reef System (MBRS) which runs along the coasts of Mexico, Belize, Guatemala and Honduras. Mesoscale variations in velocity and temperature along the reef were found in seasonal model simulations and in observations; these variations are associated with meandering of the Caribbean current (CC) and the propagation of Caribbean eddies. Diagnostic calculations and a simple assimilation technique are combined to infer the dynamically adjusted flow associated with particular eddies. The results demonstrate that when a cyclonic eddy (negative sea surface height anomaly (SSHA)) is found near the MBRS the CC shifts offshore, the cyclonic circulation in the Gulf of Honduras (GOH) intensifies, and a strong southward flow results along the reef. However, when an anticyclonic eddy (positive SSHA) is found near the reef, the CC moves onshore and the flow is predominantly westward across the reef. The model results help to explain how drifters are able to propagate in a direction opposite to the mean circulation when eddies cause a reversal of the coastal circulation. The effect of including the Meso-American Lagoon west of the Belize Reef in the model topography was also investigated, to show the importance of having accurate coastal topography in determining the variations of transports across the MBRS. The variations found in transports across the MBRS (on seasonal and mesoscale time scales) may have important consequences for biological activities along the reef such as spawning aggregations; better understanding the nature of these variations will help ongoing efforts in coral reef conservation and maintaining the health of the ecosystem in the region.  相似文献   
5.
Ecological-niche factor analysis (ENFA) was applied to the reef framework-forming cold-water coral Lophelia pertusa. The environmental tolerances of this species were assessed using readily available oceanographic data, including physical, chemical, and biological variables. L. pertusa was found at mean depths of 468 and 480 m on the regional and global scales and occupied a niche that included higher than average current speed and productivity, supporting the theory that their limited food supply is locally enhanced by currents. Most records occurred in areas with a salinity of 35, mean temperatures of 6.2–6.7  °C and dissolved oxygen levels of 6.0–6.2 ml l−1. The majority of records were found in areas that were saturated with aragonite but had low concentration of nutrients (silicate, phosphate, and nitrate). Suitable habitat for L. pertusa was predicted using ENFA on a global and a regional scale that incorporated the north-east Atlantic Ocean. Regional prediction was reliable due to numerous presence points throughout the area, whereas global prediction was less reliable due to the paucity of presence data outside of the north-east Atlantic. However, the species niche was supported at each spatial scale. Predicted maps at the global scale reinforced the general consensus that the North Atlantic Ocean is a key region in the worldwide distribution of L. pertusa. Predictive modelling is an approach that can be applied to cold-water coral species to locate areas of suitable habitat for further study. It may also prove a useful tool to assist spatial planning of offshore marine protected areas. However, issues with eco-geographical datasets, including their coarse resolution and limited geographical coverage, currently restrict the scope of this approach.  相似文献   
6.
同步改正法因其特点和优势被广泛应用于平均海面传递,文中从平均海面的理论定义和实际计算两方面出发,对同步改正平均海面传递法原理进行了论述。利用海南岛周边的长期验潮站数据,按单站传递和多站组网传递分别分析了同步改正平均海面传递的规律。结果表明,单站传递同步观测10 d能满足岛礁测绘对垂直基准面精度的要求,采用多站组网传递能较明显地减少同步时长较短时的极限误差。当采用多站组网平均海面传递同步观测5 d,其极限误差可达10 cm以内,建议在同步观测时间有限时采用该方法。结合海南岛验潮站和岛礁分布情况,同步改正平均海面传递法应用于海南岛礁测绘是可行的。  相似文献   
7.
Data from a three-year long field study of fine sediment dynamics in Cleveland Bay show that wave-induced liquefaction of the fine sediment bed on the seafloor in shallow water was the main process causing bed erosion under small waves during tradewinds, and that shear-induced erosion prevailed during cyclonic conditions. These data were used to verify a model of fine sediment dynamics that calculates sediment resuspension by both excess shear stress and wave-induced liquefaction of the bed. For present land-use conditions, the amount of riverine sediments settling on the bay may exceed by 50–75% the amount of sediment exported from the bay. Sediment is thus accumulating in the bay on an annual basis, which in turn may degrade the fringing coral reefs. For those years when a tropical cyclone impacted the bay there may be a net sediment outflow from the bay. During the dry, tradewind season, fine sediment was progressively winnowed out of the shallow, reefal waters.  相似文献   
8.
Victoria Beach (Cadiz, Spain) comprises a rocky flat outcrop in its northern zone and a sand-rich southern zone. These natural features allowed for a 5-year monitoring period and subsequent analysis of two different profiles (one in each zone) based on differences in bottom contours. Topo-bathymetric data were analysed using empirical orthogonal functions (EOFs) to determine changes over the short-, medium- and long-term. Several morphologic phenomena were identified (generalised erosion, seasonal or summer–winter tilting of the profile around different hinge points, berm development and its posterior destruction, etc.) in terms of their importance in explaining the variability of the collected data for both profiles. It is worth mentioning that both profiles undergo parallel regression in the medium-term. Thus, the 1st eigenfunction enabled us to identify the true regression of the beach shoreline, independent of seasonal or summer–winter slope changes. Reconstruction of profiles using EOF components demonstrated that though accretion periods in the medium-term were similar for both types of profiles, the accretion speed was much faster in the sand-rich profile than in the reef-protected profile (1.01 m3/day versus 0.33 m3/day). Moreover, the seasonal erosion rate and the subsequent shoreline retreat for the sand-rich profile were much larger than for the reef-protected profile (121 m3/year versus 29 m3/year). Analysis in the short-term (changes induced by a single day's storm) showed an instantaneous tilting of the profile, with the mobilised sand volume being much greater for the sand-rich than for the reef-protected profile (68 m3/m versus 12 m3/m).  相似文献   
9.
10.
Throughout Southeast Asia, blast fishing creates persistent rubble fields with low coral cover and depauperate fish communities. We stabilized a 20-year-old rubble field in a Marine Protected Area in the Philippines, using plastic mesh and rock piles in replicated 17.5m(2) plots, thereby increasing topographic complexity, fish habitat, and recruitment substrate surface area. Multivariate analysis revealed fish community shifts within the rehabilitated area from that characteristic of rubble fields to one similar to the adjacent healthy reef within three years, as measured by changes in fish abundance and body size. Coral recruitment and percent cover increased over time, with 63.5% recruit survivorship within plots, compared with 6% on rubble. Our low-cost approach created a stable substrate favoring natural recovery processes. Both rehabilitation and the elimination of poaching were integral to success, emphasizing the synergism between the two and the need to incorporate both when considering mitigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号