首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   2篇
  1998年   1篇
  1994年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The present report describes the set-up and first operation results of a novel carousel magnetic separator. This carousel magnetic separator is suitable for continuous separation of magnetized particles from water. Continuous operation is achieved by a segmented rotating separation matrix. This matrix also allows the use of low-cost permanent magnets, by means of which magnetic fields of up to 0.5 T can be generated without energy consumption. The suitability of a first prototype of this carousel magnetic separator was tested for elimination of magnetite-containing iron phosphate and iron hydroxide flocs. These flocs result from conventional precipitation/flocculation of municipal sewage with FeCl3 and the addition of magnetite particles generated by wet-chemical processes. First results demonstrate that the carousel magnetic separator can reduce phosphate concentrations of up to 14 mg/L PO43–-P in the inlet to below 1 mg/L PO43–-P in the outlet at filtration rates of about 40 m/h. Magnetite dosage in the range of 50 mg/L affects phosphate precipitation positively via a slight reduction of the precipitant volume. However, the total amount of chemicals required for phosphate elimination is increased by the substances needed for magnetite production. Therefore, a further reduction of magnetite dosage must be achieved.  相似文献   
2.
The separation of heavy metals from wastewater may be improved by precipitation/flocculation with iron- or aluminium salts. Often, the resulting products are voluminous, water-containing, amorphous hydroxides which show only limited flocculation properties and may possibly pose problems with the technical separation from the aqueous phase. The application of magnetite could be advantageous because magnetite is ferromagnetic and can be separated very quickly in a magnetic field. First of all, a simple preparation method for magnetite was studied. Pure magnetite could be prepared by mixing an iron(II) salt solution with an equivalent amount of sodium hydroxide at room temperature without oxidation by air. The required reaction time was only 3 hours. For the precipitation of heavy metals from an electroplating wastewater, a better metal elimination and smaller sludge volumes resulted with that artificially produced magnetite in comparison with a precipitation by NaOH. Thereby not only the adsorption of metals was established but also coagulation effects of the magnetite sludge with small metal hydroxide particles. By means of the experimental results. sorption of nickel and chromium was compiled as function of pH and precipitation time. Because freshly precipitated magnetite shows very good sorption and flocculation properties, and pH of precipitation may be lower, its use in high gradient magnetic separation (HGMS) could be more effective for metal elimination than magnetite powder.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号