首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   3篇
地球物理   16篇
地质学   4篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
1.
Multi-offset phase analysis of surface wave data (MOPA)   总被引:1,自引:0,他引:1  
Inaccuracy in the shear wave velocity profile inverted from surface wave data manifests from both modelling error and data uncertainty. An alternative method for dispersion curve evaluation by weighted linear regression of phase-offset data can be applied to both equispaced and non-equispaced data for objective identification of these often overlooked error sources.From field data, near-field effects are noted to at most half a wavelength and lateral discontinuities identified by marked changes in wavenumber with offset. Transition frequencies to dominant higher modes appear lower than when identified from standard plane-wave transform methods. Effects can be discriminated by their frequency, position or offset dependence.When a non-corrupt dispersion curve is extracted, the errors are up to 5% at low frequency. Through theoretical Gaussian error propagation analysis, the resulting shear wave velocity profile shows up to 18% uncertainty at depth.  相似文献   
2.
Lateritic weathering profiles (LWPs) are widespread in the tropics and comprise an important component of the Critical Zone (CZ). The Hawaiian Islands make an excellent natural laboratory for examining the tropical CZ, where the bedrock composition (basalt) is nearly uniform and rainfall varies greatly. This natural laboratory is employed to assess the utility of the HVSR (horizontal/vertical spectral ratio) method to characterize the shear-wave velocity (Vs) structure of LWPs, particularly the depth to the contact between saprolite and basalt bedrock. LWP thicknesses determined from HVSR provide good agreement with multi-channel analysis of surface waves (MASW) profiles, well logs and outcrop. LWP thicknesses may be estimated from the fundamental mode equation or through forward models. Prior knowledge about the subsurface from well, outcrop, and MASW profiles may greatly aid modeling in some cases. For the 3.2 to 1.8 Ma Koolau Volcano on Oahu, the downward rate of advance of the weathering front varies from 0.004 to 0.041 m/ka. For the 0.44 to 0.10 Ma Kohala Volcano (Big Island of Hawaii) rates vary from 0.013 to 0.047 m/ka. Simple H/V spectra develop in areas where the combined effects of time and elevated rainfall produce thick LWPs with a flat base and a general absence of core stones with an ideal layered geometry. Abundant buried core stones violate the assumption of simple layered geometries and scatter acoustic energy, leading to uninterpretable results. This is common where low rainfall and a young basaltic substrate leave abundant core stones as well as an undulating contact between saprolite and bedrock. Velocity inversions (high Vs intervals within low Vs saprolite) may also be present and originate from relatively intact bedrock horizons or mineralogical changes within saprolite. At Kohala, a gibbsite-rich horizon produces such a velocity inversion due to enhanced weathering and subsequent collapse of saprolite in a discrete horizon. © 2019 John Wiley & Sons, Ltd.  相似文献   
3.
This paper presents the results of a multi-channel analysis of surface waves (MASW) test conducted over near-surface mine workings, with the objective of delineating the underlying. Numerical studies were carried out to explain and extend the results. The displacement time histories at the surface show amplitude changes in the region over the void, and the Fourier spectra show significant energy concentration on and in the vicinity of the cavity. Different numerical models are constructed and the responses at the surface of the medium and around voids of different sizes and embedment depths are monitored. The numerical results show that part of the incident energy is trapped within the void. The trapped energy bounces back and forth inside the void, until it is attenuated by radiation. The effect of the trapped energy is seen as a concentration of energy over the void region in the frequency domain. The amount of trapped energy is a function of the size and embedment of the void, as well as of the frequency content of the source. The void absorbs part of the energy and radiates it as body waves. Therefore, the recorded responses at the surface carry valuable information about the void. The characteristics of the void can be extracted from the surface responses by analyzing the responses in time, frequency, and spatial domains.  相似文献   
4.
The understanding of geotechnical characteristics of near-surface material is of fundamental interest in seismic microzonation. Shear wave velocity (Vs), one of the most important soil properties for soil response modeling, has been evaluated through seismic profiling using the multichannel analysis of surface waves in the city of Dehradun situated along the foothills of northwest Himalaya. Fifty sites in the city have been investigated with survey lines between 72 and 96 m in length. Multiple 1-D and interpolated 2-D profiles have been generated up to a depth of 30–40 m. The Vs were used in the SHAKE2000 software in combination with seismic input motion of the recent Chamoli earthquake to obtain site response and amplification spectra. The estimated Vs are higher in the northern part of the study area (i.e., 200–700 m/s from the surface to a depth of about 30 m) as compared to the south and southwestern parts of the city (i.e., 180–400 m/s for the same depth range). The response spectra suggest that spectral acceleration values for two-story structures are three to eight times higher than peak ground acceleration at bedrock. The analysis also suggests peak amplification at 3–4, 2–2.5, and 1–1.5 Hz in the northern, central, and south-southwestern parts of the city, respectively. The spatial distributions of Vs and spectral accelerations provide valuable information for the seismic microzonation in different parts of the urban area of Dehradun.  相似文献   
5.
作为近地表横波速度结构成像的主要手段之一,面波多道分析法的正问题研究对现场观测系统设计及后续反演计算具有重要意义.目前面波频散曲线的正演主要分为两类:一是对水平层状介质中面波的本征值问题进行求解,该类方法计算效率高但较难考虑地下介质在横向上的不均匀性;二是基于波动方程的全波场模拟,该类方法在理论上可考虑任意复杂的地质模型但计算成本相对较高.本文基于振幅归一化加权的聚束分析,提出了一种适用于横向非均匀介质模型的多道瑞雷波频散曲线正演方法.首先,基于聚束分析的计算公式推导得到了经振幅归一化加权后输出功率谱中相速度与局部相速度之间的关系,然后通过黄金分割极值搜索算法计算得到了多道瑞雷波数据的理论频散曲线.数值分析结果表明,该算法能够快速地实现横向非均匀介质中多道瑞雷波频散曲线的正演计算,所求取的频散曲线与采用二维弹性波时间域有限差分模拟分析得到的结果误差较小,这在一定程度上说明了该计算方法的可靠性,从而可为面波多道分析法中的观测系统快速优化设计以及横向非均匀介质中频散曲线的反演解释提供理论支撑.  相似文献   
6.
多道面波分析方法在测量土壤压实度方面的应用研究   总被引:11,自引:5,他引:11  
在农业和工程领域,土壤压实度是一个重要问题。虽然采用钻孔方法可以探测土壤压实度情况,但费用较高。本文采用多道面波分析方(MASW)研究了土壤压实度的问题,并将试验结果同电阻率测井数据、岩心数据、测井速度做了对比,结果表明该方法可以用于土壤压实度的探测,而且速度快、费用低、结果准确可信。  相似文献   
7.
结合鄂尔多斯盆地北部塔巴庙地区低、降速带的调查实例,简述多道面波分析MASW在沙漠地区的应用,并将反演结果与小折射资料进行对比说明其运用效果.实践表明,在采集和处理参数选取合理的情况下,最大勘探测度可以达60 m,完全可以满足实际工作需要.在近地表构造复杂地区采用多道面波分析技术进行低、降速带情况调查,可以弥补小折射和微测井调查的不足,展现出受地表环境影响较小的优越性.  相似文献   
8.
In this paper an attempt has been made to evaluate the spatial variability of the depth of weathered and engineering bedrock in Bangalore, south India using Multichannel Analysis of Surface Wave (MASW) survey. One-dimensional MASW survey has been carried out at 58 locations and shear-wave velocities are measured. Using velocity profiles, the depth of weathered rock and engineering rock surface levels has been determined. Based on the literature, shear-wave velocity of 330 ± 30 m/s for weathered rock or soft rock and 760 ± 60 m/s for engineering rock or hard rock has been considered. Depths corresponding to these velocity ranges are evaluated with respect to ground contour levels and top surface levels have been mapped with an interpolation technique using natural neighborhood. The depth of weathered rock varies from 1 m to about 21 m. In 58 testing locations, only 42 locations reached the depths which have a shear-wave velocity of more than 760 ± 60 m/s. The depth of engineering rock is evaluated from these data and it varies from 1 m to about 50 m. Further, these rock depths have been compared with a subsurface profile obtained from a two-dimensional (2-D) MASW survey at 20 locations and a few selected available bore logs from the deep geotechnical boreholes.  相似文献   
9.
The best method to evaluate the seismic site response is by means of borehole vertical arrays that use earthquake records from different depths. In this paper we introduce the implementation of a single borehole sensor system (synchronized to a sensor on the surface) that is fixed at variable depths within a single well. This system is used for recording small amplitude earthquake signals at variable stiffness conditions in depth to compute empirical borehole transfer functions. The computed average empirical borehole transfer functions allow the estimation of an S-wave velocity model that is constrained using the frequency peak observed in the H/V ratio curve.Pairs of surface and borehole earthquake records were obtained with the borehole sensor placed at − 10, −20, −50, and − 100 m depth in a test site in Managua, Nicaragua. The average velocity of the final model down to − 100 m appeared to be in good agreement with the average velocity computed via cross-correlation using the surface and borehole signals. Likewise, an inverted MASW profile and H/V ratio at the same site agree with the S-wave velocity model obtained.  相似文献   
10.
This paper presents results from multi-channel analysis surface waves (MASW) tests conducted to locate buried timber trestles in two different sections (A and B) of an earth embankment. For section A, the location of the trestles is known as well as the soil properties; thus, it is used for calibration purposes. Conversely, the location of the timber trestles is unknown for section B. A seismic array of 24 geophones with a spacing of 0.5 m is used for surface-wave measurements. Different signal processing techniques are used for data analysis: dispersion curves, power spectral functions, frequency-spectra contour plots, two-dimensional-Fourier transform, and the wavelet transform. A new procedure is proposed for the surface location of buried trestles, which is based on the use of the normalized average power energy plot. Finite-element numerical simulations of MASW tests on layered and homogeneous media with and without buried trestles are performed to support experimental results and to explain the wave–trestle interaction. The numerical simulations show that a buried trestle induces vibration amplifications at the surface in front of its location but vibration attenuation immediately after. These effects, however, are observed only if the embedment depth of timber trestle is smaller than one third of the wavelength. Experimental and numerical results show that the results from MASW tests can be successfully used to define the surface location of decayed buried trestles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号