首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   1篇
自然地理   1篇
  2007年   1篇
  1990年   1篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.
Brush Creek drains a 76·1 km2 watershed within urban Kansas City, Missouri and eastern Kansas. A concrete-lined reach trending 6·1 km through the Plaza District of Kansas City, Missouri has been the focus for several major floods over the past ten years. Channel geometry, slope, and floodwater elevations were determined in the field for segments of the concrete-lined section of Brush Creek for a flood event that occurred on September 18, 1986. Discharge was computed by indirect methods and compared to a value determined from a rating curve established by the Water Resources Division of the U.S.G.S. Boundary shear stress, unit stream power, and average velocity were also computed in order to establish a quantitative relationship between sediment distribution, volume, and size fractions; and flow dynamics operating throughout the channel during this event. Boundary shear stress ranged from 91-96 Nm?2, stream power was 528-557 Wm?2, while average velocity was 5-8 ms?1. These values were sufficient to displace concrete slabs as large as 5 m long by 4·6 m wide by 0·23 m thick weighing an estimated 12 245 kg. As the channel was sediment free and unsecured prior to the flood, the distribution of deposits and subsequent channel scour provide valuable evidence for potentially hazardous sections of this urban stream.  相似文献   
2.
Douglas M. Thompson   《Geomorphology》2007,83(3-4):199-214
A field-based project was initiated to characterize the influence of varying discharge and bed topography along a pool exit-slope on the strength of turbulence generated by vortex shedding. Velocities were measured with an ADV downstream of a boulder constriction within a shear zone of a large pool. Measurements were repeated for four flows that varied from 20% to 50% of bankfull discharge. An additional longitudinal profile was conducted along the pool thalweg. Plots of velocity demonstrate high near-bed velocities and turbulence levels in the pools. Turbulence levels were highest closer to the constriction in the shear zone. Turbulent kinetic energy decayed in the downstream direction in response to the bed topography and at lower discharges. Instantaneous velocities are large enough to temporarily lift pebbles at this depth. It appears that instantaneous forces created by vortex shedding may play an important role in scouring pools downstream of constrictions. The turbulence may also respond to changes in bed topography in a manner that encourages feedbacks among bed topography, characteristics of turbulence, and sediment transport.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号