首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   2篇
地质学   1篇
  2022年   1篇
  2008年   1篇
  2006年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
The results of a palaeomagnetic investigation of a 27 m thick loess/palaeosol sequence in Viatovo (NE Bulgaria) are presented in this paper. The sequence consists of topsoil S0, seven loess horizons (L1–L7) and six interbedded palaeosols (S1–S6) overlying a red clay (terra rossa) complex. Magnetic viscosity experiments, IRM acquisition, AMS analysis and NRM stepwise alternating and thermal demagnetisation experiments of pilot samples were implemented for precise determination of the characteristic remanence and construction of a reliable magnetostratigraphical scheme. Analysis of IRM acquisition curves using the expectation – maximization algorithm of Heslop et al. [Heslop, D., Dekkers, M., Kruiver, P., van Oorschot, H., 2002. Analysis of isothermal remanent magnetization acquisition curves using the expectation – maximization algorithm. Geophys. J. Int., 148, 58–64] suggests that the best fitting is obtained by three coercivity components. Component 1 corresponds to SD maghemite/magnetite, while component 2 is probably related to the presence of oxidised detrital magnetites. The third component shows varying coercivities depending on the degree of pedogenic alteration of the samples and probably reflects the presence of detrital magnetite grains oxidised at different degree.

The relevance of the Viatovo section as a key representative sequence for the loess cover in the Danube basin is confirmed by the presence of geomagnetic polarity changes in the lower part of the sequence. The youngest one recorded in the seventh loess unit L7 can be identified as corresponding to the Matuyama/Brunhes palaeomagnetic polarity transition. Two normal magnetozones were found in the red clay complex, probably corresponding to the Jaramillo and Olduvai subchronozones of the Matuyama chron.  相似文献   

2.
Speleological, stratigraphic, paleomagnetic and faunal data is presented for the Buffalo Cave fossil site in the Limpopo Province of South Africa. Speleothems and clastic deposits were sampled for paleomagnetic and mineral magnetic analysis from the northern part of the site, where stratigraphic relationships could be more easily defined and a magnetostratigraphy could therefore be developed for the site. This is also where excavations recovered the fossil material described. A comparison of the east and South African first and last appearance data with the Buffalo Cave fauna was then used to constrain the magnetostratigraphy to produce a more secure age for the site. The magnetostratigraphy showed a change from normal to reversed polarity in the basal speleothems followed by a short normal polarity period in the base of the clastic deposits and a slow change to reversed directions for the remainder of the sequence. The biochronology suggested an optimal age range of between 1.0 Ma and 600,000 yr based on faunal correlation with eastern and southern Africa. A comparison of the magnetobiostratigraphy with the GPTS suggests that the sequence covers the time period from the Olduvai event between 1.95 and 1.78 Ma, through the Jaramillo event at 1.07 Ma to 990,000 yr, until the Bruhnes-Matuyama boundary at 780,000 yr. The faunal-bearing clastic deposits are thus dated between 1.07 Ma and 780,000 yr with the main faunal remains occurring in sediments dated to just after the end of the Jaramillo Event at 990,000 yr.  相似文献   
3.
We present the results of a combined Electron Spin Resonance (ESR) and Luminescence dating study for the lowermost stratigraphic unit (TD1) of the palaeoanthropological site of Atapuerca Gran Dolina, Spain. Ten samples collected through the Main Section were dated using either the Multiple Centre (MC) ESR approach or the single-grain thermally transferred optically stimulated luminescence (SG TT-OSL) technique, both of which were applied to quartz grains. The two methods yield consistent ages, providing a robust chronostratigraphic framework for the TD1 deposits and enabling improved correlation of the magnetostratigraphic succession (comprising three intervals of normal polarity; N1 to N3, from bottom to top) with the Geomagnetic Polarity Time Scale. Specifically, the results provide a late Early Pleistocene chronology for TD1, and clearly position the deposits in the post-Olduvai time range (<1.77 Ma). The final age estimates range from 1.30 ± 0.14 Ma (TT-OSL) close to the bottom of the section to a mean ESR age of 1.05 ± 0.12 Ma (1 s.d.) for three samples from the N3 interval towards the top. Consequently, the N3 interval may confidently be correlated to the Jaramillo Subchron, while we propose a correlation of N1 and N2 with the Cobb Mountain subchron and Punaruu excursion, respectively; although we cannot exclude that these two normal intervals may correspond to other, unknown, geomagnetic events given the existing uncertainties associated with the ESR and luminescence ages.From a methodological point of view, the ESR MC approach shows that the Titanium signal provides the most reliable burial ages for TD1. In contrast, the Aluminium centre yields systematically overestimated age estimates, as a result of incomplete resetting of the signal before sediment deposition. The SG TT-OSL ages presented here are amongst the oldest published so far, and highlight the potential of the high temperature SG TT-OSL290 approach for obtaining finite ages exceeding 1 Ma at Atapuerca.Finally, these new dating results provide key insights into the rates and nature of sedimentary processes at Gran Dolina, modifying long-standing interpretations of the cave formation and infilling dynamics. An age of at least 1.4 Ma may be inferred for the base of the sedimentary infill at the Main Section, providing minimum age constraint for the formation of the cavity and, by extension, for the intermediate level of the Atapuerca karst. The opening of the cave, which pre-dates human occupation, most likely occurred close to or slightly after 0.9 Ma. This suggests that both TD4 and TD6 archaeological levels were deposited within a relatively short time range of <100 kyr. The so-called autochthonous fluvial deposits from TD1 unit, or at least those dated in the present study, were also clearly primarily derived from outside the karst system, and were not reworked from older deposits within the karst. They experienced sufficient daylight exposure and minimum transport times within the karst system to enable consistency between the ESR and TT-OSL burial ages and the independent magnetostratigraphic evidence. Our results highlight the need to reconsider the terminology traditionally employed to differentiate the two main phases of Gran Dolina's sedimentary infill.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号