首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球物理   2篇
地质学   1篇
海洋学   2篇
  2013年   1篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
From August 2006 to August 2007, the concentrations of dissolved silica (Si(OH)4) were monitored in the surface water of Urasoko Bay and the mouth of the stream that runs into the bay. Urasoko Bay is located on the northern coast of Ishigaki Island, Okinawa, Japan, which is in a subtropical area of the North Pacific Ocean and is surrounded by a relatively poorly developed fringing reef. Added to these samples were freshwater from the upstream area and brackish water that exudes at the beach site, which were collected from April to June 2007. Rainwater samples were also collected during the study period. The concentration of Si(OH)4 generally decreased from upstream to the bay site, and, on clear days, Si(OH)4 data from all study sites (the bay, beach, stream mouth, and upstream) plotted against salinity fell on a single straight line. When the influence of rainwater was, the results were scattered below the straight line, which suggests dilution by rainwater with a much lower Si(OH)4 concentration. These findings show that offshore seawater, rainwater, and upstream freshwater regulate the concentration of Si(OH)4 in the surface water of Urasoko Bay.  相似文献   
2.
This study investigates the distribution of boulders at Miyara Bay of Ishigaki Island, Japan. These boulders were deposited on a reef flat extending approximately 400–1300 m in width. Most boulders were rectangular to ellipsoidal, without sharp broken edges. They are reef and coral rock fragments estimated as <335 m3 (<633 t). Locally in the bay, the relationship between the boulder weight and position shows that boulders of a given weight have a clear limit on seaward distribution on the reef flat. For example, more than 1, 10, and 100 tons of boulders were deposited, respectively, more than 500, 300, and 100 m from the reef edge. The line is consistent with the possible landward transport limit by maximum storm waves at the Ryukyu Islands, suggesting that the line was formed by the reworking of some boulders by maximally strong storm waves, although we can not exclude the possibility that the line was formed by tsunamis. Furthermore, 68% of boulders at the bay are deposited beyond this line. Therefore, the presence of these boulders at their present positions is difficult to explain solely by storm waves, implying the possible tsunami origin of these boulders. The boulders are characteristically concentrated along the high‐tide line, suggesting the drastic reduction of the tsunami hydraulic force along the line. Previous studies using radiocarbon age dating, as well as our study, imply that at least 69 boulders at Miyara Bay were probably deposited at their present positions by the 1771 Meiwa tsunami, although some of these boulders might have been emplaced and displaced on the reef flat by prior tsunami or storm surges.  相似文献   
3.
The Meiwa Tsunami, one of the largest tsunamis recorded in historical documents in Japan struck Ishigaki Island and neighboring islands of the Ryukyu Arc in April 1771 AD, killing more than 12 000 people. An enormous number of massive Porites coral boulders are scattered on the shore and in the reef moat of eastern Ishigaki Island. Although these boulders likely were cast ashore by the Meiwa Tsunami, a detailed examination has not yet been conducted. When the marine reservoir effect is taken into account, one of mode values of calibrated radiocarbon dates possibly corresponds to the time of the 1771 event. However, the range of calibrated radiocarbon ages indicates that the transport of the boulders cannot be ascribed solely to the tsunami. Oxygen isotope microprofiling, which indicates sea-surface temperature variation, was therefore conducted to further investigate the mechanism of transport. The results suggest that the skeletal growth of most coral colonies was interrupted in summer or autumn; hence, tropical storms and typhoons are also very likely to be agents of transport. Thus, by combining radiocarbon dating with oxygen isotope microprofiling to investigate Porites coral boulders, it is possible to separate paleotsunami boulders from those transported by storm events as far as tsunamis occurred during the non-storm season.  相似文献   
4.
From April 2005 to March 2006, the concentration of dissolved cadmium (Cd) was monitored in the surface seawater of Urasoko Bay, which is in a subtropical area of the North Pacific Ocean and is surrounded by a well-developed fringing reef. During this period, the observed salinity and Cd concentrations varied in a range of approximately 16–34.5 and 4.8–77.8 pM, respectively. The concentration range of Cd obtained in this study was considered to be too low to damage the coral species, and its variation throughout the year did not show any seasonality and was not connected with climate data. The Cd-salinity plot for all the data in the salinity range over 26 showed apparent non-conservative behavior, which suggests a possible irregular input of Cd from a solid phase through streams and groundwater, release from bottom sediments, and atmospheric deposition into the bay.  相似文献   
5.
The island of Ishigaki Jima, located in the western part of the southern Ryukyu Arc, Japan, is underlain by a basement comprising the Tumuru and Fu-saki formations. The former is a pelitic glaucophane schist with a metamorphic age of 220–190 Ma, and the latter is a weakly metamorphosed accretionary complex, composed mainly of chert, mudstone and sandstone with minor amounts of limestone and mafic rocks. The Fu-saki Formation was weakly metamorphosed at ∼140 Ma. Latest Carboniferous–Early Jurassic microfossils have been obtained from the limestones, cherts and siliceous mudstones of this formation, but no fossils have been collected from the phyllitic mudstones. The radiolarian fauna of the phyllitic mudstones described herein indicates a late Pliensbachian–early Toarcian (Early Jurassic) age. This result, when combined with existing data, enables the reconstruction of an oceanic plate stratigraphy, showing a succession of (in ascending order) Upper Carboniferous–Triassic cherts, Sinemurian–lower Pliensbachian siliceous mudstones and upper Pliensbachian–lower Toarcian phyllitic mudstones and sandstones. The radiolarians from the phyllitic mudstones are important in constraining the timing of the accretion of the Fu-saki Formation to the base of the Tumuru Formation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号