首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   2篇
  2011年   1篇
  2009年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
A fluorescent labelling method is presented as a new tool for the investigation of organic particle transport and biogenic carbon cycling processes in sandy littoral interstices at Lake Tegel, Berlin, Germany. Passive particle transport through the pore system was studied by in situ exposition of 2.4 μm monodisperse polymeric resin microparticles stained with 7-amino-4-methylcoumarin (AMC). Uptake of fluorescein-5-isothiocyanate (FITC)-labelled Chlorella vulgaris and fine particulate organic matter (FPOM) by the interstitial fauna was investigated in laboratory and field experiments. The major portion (>85%) of the FITC-labelled particles added to sediment cores was recovered from the topmost centimetre of sediment during the study period of 14 days. Uptake of FITC-labelled FPOM was observed in several benthic groups, e.g. chironomids, microcrustaceans, oligochaetes and tardigrads, whereas C. vulgaris was ingested by oligochaetes only. There is evidence to suggest that both are suitable materials for investigating the fragmentation and ingestion of organic material by herbivorous and detritivorous fauna. Field experiments with inert microparticles and FITC-labelled FPOM (<1 mm) prepared from dried alder leaves were carried out in plexiglass tubes as in situ whole core technique. Within the investigation period of two weeks, the transport of FPOM was restricted to the topmost 2–3 cm of sediment in conjunction with a distinct fragmentation to finer size classes with respect to increasing sediment depth. Vertical FPOM transport was hindered by a high interstitial concentration of natural POM and an intensive settlement of the interstices by algae (mainly epispammic algae, 65–96% of algae cell number) and extra-cellular polymeric substances (EPS), which formed a dense three-dimensional structure.  相似文献   
2.
The sandy littoral zone of Lake Tegel (Berlin, Germany) was investigated during 2004–2006 down to sediment depths ≥26 cm to derive a scheme of seasonal carbon turnover under induced bank filtration conditions. Carbon turnover processes were quantified regarding external and internal sources of dissolved and particulate organic matter (DOM and POM), primary production, community respiration, redox potential as well as specific loads of soluble chemical compounds such as nitrogen, iron, manganese and DOC.Over the course of the year, infiltrating DOC decreased by about 13–20% within the upper 26 cm sediment of the infiltration stretch. Gradients of all observed soluble compounds that are highly cross-linked to biological activities were highest in the topmost centimetre. In this depth mass balances (output–input) were negative concerning NO3-N (−1 mg dm−2 d−1, summer mean) and DOC (−2 mg dm−2 d−1, winter mean), respectively, while specific loads of cations such as manganese reached up to 0.2 mg dm−2 d−1 during summer. Carbon mineralization ranged between 3 and 7 mg C dm−2 d−1 and was nearly twice as high in summer as in winter. The turnover of the infiltrating DOC contributed maximally 25% in summer to 50% in winter to the entire organic carbon mineralization. Gross and net primary production differed up to a factor of >10, indicating very fast turnover reactions and the predominance of community respiration and mineralization, respectively. The POC in the upper sediment layer (10 cm) temporally varied around 1% sediment d.w.; benthic algae, organic seston input and autumnal leaf fall contributed similar percentages to the POC pool.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号