首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   19篇
  国内免费   63篇
测绘学   3篇
大气科学   2篇
地球物理   33篇
地质学   184篇
海洋学   6篇
综合类   6篇
自然地理   13篇
  2024年   2篇
  2022年   11篇
  2021年   4篇
  2020年   10篇
  2019年   6篇
  2018年   7篇
  2017年   7篇
  2016年   8篇
  2015年   5篇
  2014年   8篇
  2013年   11篇
  2012年   15篇
  2011年   11篇
  2010年   7篇
  2009年   8篇
  2008年   13篇
  2007年   13篇
  2006年   12篇
  2005年   16篇
  2004年   11篇
  2003年   8篇
  2002年   3篇
  2001年   6篇
  2000年   4篇
  1999年   8篇
  1998年   2篇
  1997年   2篇
  1996年   5篇
  1995年   5篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1985年   2篇
  1983年   1篇
  1978年   1篇
排序方式: 共有247条查询结果,搜索用时 46 毫秒
1.
Re-Os同位素对峨眉山大火成岩省成因制约的探讨   总被引:6,自引:3,他引:3  
史仁灯  郝艳丽  黄启帅 《岩石学报》2008,24(11):2515-2523
峨眉山大火成岩省(ELIP)主要由玄武岩、玄武质火山碎屑岩及少量的苦橄岩(包括越南的科马提岩)、长英质岩石以及层状岩体和岩墙组成,其物质来源直接关系到其成因是否与地幔柱活动有关。Re-Os同位素体系是地核、地幔和地壳物质的最佳示踪剂。前人对ELIP内的Re-Os同位素研究表明,低Ti玄武岩的Os含量为0.006×10^-9-0.40010^-9,^187Os/^188Os初始值为0.1371~1.403,并提出其与地幔柱活动有关;而高Ti玄武岩的Os含量为0.00410^-9~0.56010^-9,^187Os/^188Os初始值为0.1271~5.19,认为起源于大陆岩石圈地幔或地幔柱上升过程中受到大量岩石圈地幔“混染”(xu JF et al.,2007);科马提岩的0s含量为1.2410^-9~7.0010^-9,^187Os/^188Os初始值为0.1251~0.1261,苦橄岩的Os含量为0.3210^-9~2.32910^-9,^187Os/^188Os初始值为0.1233~0.1266,指示苦橄岩和科马提岩均来自亏损地幔源区(Hanski et al.,2004;陈雷等,2007)。本文利用Os含量最低、^187Os/^188Os最高的高Ti玄武岩作为地壳端员,用铁质陨石、原始上地幔(PUM)和亏损地幔(DMM)作为地核和各种地幔端员,分别做二元混合计算,结果显示绝大多数玄武岩和所有苦橄岩及科马提岩均落在地壳和DMM混合曲线附近,并且邻区特提斯洋地幔岩与DMM具有相近的Os含量和^187Os/^188Os组成,据此推测峨眉山火成岩的形成与特提斯洋的活动有关,主要受控于地壳和亏损地幔的相互作用。  相似文献   
2.
Using the diving submersible survey NAUTICA we investigated the central part of the Caribbean large igneous province (CLIP) to observe and sample internal portions of this proposed oceanic plateau. Most of the samples are gabbroic and doleritic rocks; basalts are scarce. Radiometric dating by 40Ar/39Ar incremental heating experiments indicate that the intrusive rocks are Campanian in age (81–75 Ma). In some places these intrusive rocks underlie older Santonian (85–83 Ma) extrusive basaltic rocks, suggesting that the Campanian rocks represent a sill injection and an underplating episode. Results of the diving program supplemented by information from ODP and DSDP drilling sites document a 20 m.y. period (94–75 Ma) of igneous activity in the submerged portion of the Caribbean large igneous province (CLIP). In the northern part of the Beata Ridge late Campanian and/or post Campanian uplift is documented by prominent Maastrichtian (71–65 Ma) erosion and the establishment of a Paleocene-middle Eocene (65–49 Ma) carbonate platform. During and after the uplift an extensional period is indicated by seismic images and the subsidence (3 km depth) of the carbonate platform. Paleocene ages (55–56 Ma) determined on some volcanic samples are attributed to localised decompression mantle melting that accompanied the extension. We document a prolonged period of magmatic and tectonic events that do not fit with the current models of short-lived plateau formation during mantle plume initiation but shares many similarities with the constructional histories of other oceanic large igneous provinces.  相似文献   
3.
Besides granites of the ilmenite series, in which the anisotropy of magnetic susceptibility (AMS) is mainly controlled by paramagnetic minerals, the AMS of igneous rocks is commonly interpreted as the result of the shape-preferred orientation of unequant ferromagnetic grains. In a few instances, the anisotropy due to the distribution of ferromagnetic grains, irrespective of their shape, has also been proposed as an important AMS source. Former analytical models that consider infinite geometry of identical and uniformly magnetized and coaxial particles confirm that shape fabric may be overcome by dipolar contributions if neighboring grains are close enough to each other to magnetically interact. On these bases we present and experimentally validate a two-grain macroscopic numerical model in which each grain carries its own magnetic anisotropy, volume, orientation and location in space. Compared with analytical predictions and available experiments, our results allow to list and quantify the factors that affect the effects of magnetic interactions. In particular, we discuss the effects of (i) the infinite geometry used in the analytical models, (ii) the intrinsic shape anisotropy of the grains, (iii) the relative orientation in space of the grains, and (iv) the spatial distribution of grains with a particular focus on the inter-grain distance distribution. Using documented case studies, these findings are summarized and discussed in the framework of the generalized total AMS tensor recently introduced by Cañon-Tapia (Cañon-Tapia, E., 2001. Factors affecting the relative importance of shape and distribution anisotropy in rocks: theory and experiments. Tectonophysics, 340, 117–131.). The most important result of our work is that analytical models far overestimate the role of magnetic interaction in rock fabric quantification. Considering natural rocks as an assemblage of interacting and non-interacting grains, and that the effects of interaction are reduced by (i) the finite geometry of the interacting clusters, (ii) the relative orientation between interacting grains, (iii) their heterogeneity in orientation, shape and bulk susceptibility, and (iv) their inter-distance distribution, we reconcile analytical models and experiments with real case studies that minimize the role of magnetic interaction onto the measured AMS. Limitations of our results are discussed and guidelines are provided for the use of AMS in geological interpretation of igneous rock fabrics where magnetic interactions are likely to occur.  相似文献   
4.
长江口海域新生代地层与断裂活动性初探   总被引:7,自引:1,他引:7  
长江口海域通过浅层人工地震勘察查明,新生代地层可分为5个地震层。分别为第四系、上新统、中新统上段、中新统下段及始新统。第三纪地层自东北向西南依次超覆、减薄尖灭,上部被第四纪地层不整合覆盖。沉积基底主要由晚侏罗世火山岩系及燕山晚期酸性小岩体构成,未发现早第三纪及晚白垩世断陷盆地。断裂构造很发育,按展布方向大体可归为北东、北西及近东西向3组,皆为正断层。前两者数量多、延伸长、断距大,与同区的航磁异常构架吻合。北东向断裂分段明显,西南段为第四纪断裂,中段为晚第三纪断裂,东北段为早第三纪断裂;而北西向断裂分段不很清晰。两者的垂直位移速率平均在0.015mm/a。本文对该海域有关的几个地质问题进行了讨论。  相似文献   
5.
Africa’s landscape is dominated by a manifold of second-order epeirogenic structures superimposed on a first-order bimodal topography. Bivariate regression analysis of Africa’s surface topography shows that this is a complexly folded surface with regionally elevated areas in southern and eastern Africa, and a topographically low northern and western Africa. The apparent spatial relationships between these features are analysed using anomaly correlation between surface topography and free-air gravity anomalies. Occurrences of positively correlated features between gravity and topography in Africa are found to be limited to second-order epeirogenic features. Geophysical modelling and geologic evidence indicate that Africa’s bimodal topography is genetically distinct from these second-order features, and linked to sources as deep as the sublithospheric mantle. The age, measured and modelled elevation of the bimodal topography require that topographic uplift of south-central Africa be episodic. We infer from our findings together with relative sea-level changes, that the near-bimodality of Africa’s topography is an ancient feature inherited at least from upper Paleozoic times. Our reconstructed paleotopography suggests that Africa was largely a low-lying continent dominated by its cratons, and that basement distribution disregards the present-day uplift patterns of Africa.  相似文献   
6.
By shallow seismic prospecting, the Cenozoic Group in the sea area near the Yangtze Rver Mouth can be divided into five seismic sequences. They correspond to the Quaternary,Pliocene, Upper Miocene, Lower Miocene and Eocene respectively. The Quaternary System covers all the detecting area. The Tertiary System overlaps and thins out from NE to SW. The sedimentary basement mainly consists of volcanic rock (J3) and acidic rock (r35). Paleogene or Late Cretaceous basins are not found there. The faults that have been detected are all normal faults. They can be divided into three groups (NE, NW, near EW) by their trend. The NE and NW-trending faults are predominant, and agree with aeromagnetic anomaly. Their length and displacement are larger than that of the EW-trending faults. The activity of the NEtrending faults is different in different segments. The SW segment is a Quaternary fault, the middle segment is a Neogene fault, The NE is Paleogene. But the segment of the NW-trending fault is not obvious. The average vertical displacement rate is about 0.015mm/a.  相似文献   
7.
The Kundal area of Malani Igneous Suite consists of volcano-plutonic rocks. Basalt flows and gabbro intrusives are associated with rhyolite. Both the basic rocks consist of similar mineralogy of plagioclase, clinopyroxene as essential and Fe-Ti oxides as accessories. Basalt displays sub-ophitic and glomeroporphyritic textures whereas gabbro exhibits sub-ophitic, porphyritic and intergrannular textures. They show comparable chemistry and are enriched in Fe, Ti and incompatible elements as compared to MORB/CFB. Samples are enriched in LREE and slightly depleted HREE patterns with least significant positive Eu anomalies. Petrographical study and petrogenetic modeling of [Mg]-[Fe], trace and REE suggest cogenetic origin of these basic rocks and they probably derived from Fe-enriched source with higher Fe/Mg ratio than primitive mantle source. Thus, it is concluded that the basic volcano-plutonic rocks of Kundal area are the result of a low to moderate degree (< 30%) partial melting of source similar to picrite/komatiitic composition. Within plate, anorogenic setting for the basic rocks of Kundal area is suggested, which is in conformity with the similar setting for Malani Igneous Suite.  相似文献   
8.
New structural and petrological data unveil a very complicated ductile deformation history of the Xiongdian-Suhe HP metamorphic unit, north-western Dabie Shun, central China. The finegrained symplectic amphibolite-facies assemblage and coronal structure enveloping eclogite-facies garnet,omphacite and phengite etc., representing strain-free decompression and retrogressive metamorphism,are considered as the main criteria to distinguish between the early-stage deformation under HP metamorphic conditions related to the continental deep subduction and collision, and the late-stage deformation under amphibolite to greenschist-facies conditions occurred in the post-eclogite exhumation processes.Two late-stages of widely developed, sequential ductile deformations D3 and D4, are recognized on the basis of penetrative fabrics and mineral aggregates in the Xiongdian-Suhe HP metamorphic unit, which shows clear, regionally, consistent overprinting relationships. D3 fabrics are best preserved in the Suhe tract of low post-D3 deformation intensity and characterized by steeply dipping layered mylonitic amphibolites associated with doubly vergent folds. They are attributed to a phase of tectonism linked to the initial exhumation of the HP rocks and involved crustal shortening with the development of upright structures and the widespread emplacement of garnet-bearing granites and felsic dikes. D4 structures are attributed to the main episode of ductile extension (D^24) with a gently dipping foliation to the north and common intrafolial, recumbent folds in the Xiongdian tract, followed by normal sense top-to-the northductile shearing (D^24) along an important tectonic boundary, the so-called Majiawa-Hexiwan fault (MHF), the westward continuation of the Balifan-Mozitan-Xiaotian fault (BMXF) of the northern Dabie Shan. It is indicated that the two stages of ductile deformation observed in the Xiongdian-Suhe HP metamorphic unit, reflecting the post-eclogite compressional or extrusion wedge formation, the subhorizontal ductile extension and crustal thinning as well as the top-to-the north shearing along the high-angle ductile shear zones responsible for exhumation of the HP unit as a coherent slab, are consistent with those recognized in the Dabie-Sulu UHP and HP metamorphic belts, suggesting that they were closely associated in time and space. The Xiongdian-Suhe HP metamorphic unit thus forms part of the Triassic(250-230 Ma) collision orogenic belt, and can not connect with the South Altun-North Qaidam-North Qinline UHP metamorphic belt formed durin~ the Early Paleozoic (500-400Ma).  相似文献   
9.
The structural organization of a giant mafic dyke swarm, the Okavango complex, in the northern Karoo Large Igneous Province (LIP) of NE Botswana is detailed. This N110°E-oriented dyke swarm extends for 1500 km with a maximum width of 100 km through Archaean basement terranes and Permo-Jurassic sedimentary sequences. The cornerstone of the study is the quantitative analysis of N>170 (exposed) and N>420 (detected by ground magnetics) dykes evidenced on a ca. 80-km-long section lying in crystalline host-rocks, at high-angle to the densest zone of the swarm (Shashe area). Individual dykes are generally sub-vertical and parallel to the entire swarm. Statistical analysis of width data indicates anomalous dyke frequency (few data <5.0 m) and mean dyke thickness (high value of 17 m) with respect to values classically obtained from other giant swarms. Variations of mean dyke thicknesses from 17 (N110°E swarm) to 27 m (adjoining and coeval N70°E giant swarm) are assigned to the conditions hosting fracture networks dilated as either shear or pure extensional structures, respectively, in response to an inferred NNW–SSE extension. Both fracture patterns are regarded as inherited brittle basement fabrics associated with a previous (Proterozoic) dyking event. The Okavango N110°E dyke swarm is thus a polyphase intrusive system in which total dilation caused by Karoo dykes (estimated frequency of 87%) is 12.2% (6315 m of cumulative dyke width) throughout the 52-km-long projected Shashe section. Assuming that Karoo mafic dyke swarms in NE Botswana follow inherited Proterozoic fractures, as similarly applied for most of the nearly synchronous giant dyke complexes converging towards the Nuanetsi area, leads us to consider that the resulting triple junction-like dyke/fracture pattern is not a definitive proof for a deep mantle plume in the Karoo LIP.  相似文献   
10.
The Khibiny Complex hosts a wide variety of carbon-bearing species that include both oxidized and reduced varieties. Oxidised varieties include carbonate minerals, especially in the carbonatite complex at the eastern end of the pluton, and Na-carbonate phases. Reduced varieties include abiogenic hydrocarbon gases, particularly methane and ethane, dispersed bitumens, solid organic substances and graphite. The majority of the carbon in the Khibiny Complex is hosted in either the carbonatite complex or within the so-called “Central Arch”. The Central Arch is a ring-shaped structure which separates khibinites (coarse-grained eudialite-bearing nepheline-syenites) in the outer part of the complex from lyavochorrites (medium-grained nepheline-syenites) and foyaites in the inner part. The Central Arch is petrologically diverse and hosts the major REE-enriched apatite–nepheline deposits for which the complex is best known. It also hosts zones with elevated hydrocarbon (dominantly methane) gas content and zones of hydrothermally deposited Na-carbonate mineralisation. The hydrocarbon gases are most likely the product of a series of post-magmatic abiogenic reactions. It is likely that the concentration of apatite-nepheline deposits, hydrocarbon gases and Na-carbonate mineralisation, is a function of long lived fluid percolation through the Central Arch. Fluid migration was facilitated by stress release during cooling and uplift of the Khibiny Complex. As a result, carbon with a mantle signature was concentrated into a narrow ring-shaped zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号