首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   2篇
地质学   1篇
  2010年   2篇
  2007年   1篇
排序方式: 共有3条查询结果,搜索用时 156 毫秒
1
1.
HBV模型在中国东北多冰雪地区的应用研究   总被引:4,自引:0,他引:4  
HBV模型是瑞典SMHI开发研制的水文预报模型,广泛用于水文预报、未控制河流的流量模拟、设计洪水计算和水质研究。HBV/IHMS的积雪和融雪模型,可以模拟冰河和田间积雪区的降水量。中国东北地区有较长冰雪覆盖期,春汛预报和春季抗旱水量分析尤为重要,但是缺少考虑融雪(冰)的洪水预报方案和软件系统。利用鸟苏里江一级支流挠力河的历史水文气象资料作为实例应用HBV/IHMS,模拟效果良好,分析结果表明HBV模型对于中国东北多冰雪地区的洪水或水量预报是可行的。  相似文献   
2.
Ragab Ragab  John Bromley 《水文研究》2010,24(19):2663-2680
A newly Integrated Hydrological Modelling System (IHMS) has been developed to study the impact of changes in climate, land use and water management on groundwater and seawater intrusion (SWI) into coastal areas. The system represents the combination of three models, which can, if required, be run separately. It has been designed to assess the combined impact of climate, land use and groundwater abstraction changes on river, drainage and groundwater flows, groundwater levels and, where appropriate, SWI. The approach is interdisciplinary and reflects an integrated water management approach. The system comprises three packages: the Distributed Catchment Scale Model (DiCaSM), MODFLOW (96 and 2000) and SWI models. In addition to estimating all water balance components, DiCaSM, produces the recharge data that are used as input to the groundwater flow model of the US Geological Survey, MODFLOW. The latter subsequently generates the head distribution and groundwater flows that are used as input to the SWI model, SWI. Thus, any changes in land use, rainfall, water management, abstraction, etc. at the surface are first handled by DiCaSM, then by MODFLOW and finally by the SWI. The three models operate at different spatial and temporal scales and a facility (interface utilities between models) to aggregate/disaggregate input/output data to meet a desired spatial and temporal scale was developed allowing smooth and easy communication between the three models. As MODFLOW and SWI are published and in the public domain, this article focuses on DiCaSM, the newly developed unsaturated zone DiCaSM and equally important the interfacing utilities between the three models. DiCaSM simulates a number of hydrological processes: rainfall interception, evapotranspiration, surface runoff, infiltration, soil water movement in the root zone, plant water uptake, crop growth, stream flow and groundwater recharge. Input requirements include distributed data sets of rainfall, land use, soil types and digital terrain; climate data input can be either distributed or non‐distributed. The model produces distributed and time series output of all water balance components including potential evapotranspiration, actual evapotranspiration, rainfall interception, infiltration, plant water uptake, transpiration, soil water content, soil moisture (SM) deficit, groundwater recharge rate, stream flow and surface runoff. This article focuses on details of the hydrological processes and the various equations used in DiCaSM, as well as the nature of the interface to the MODFLOW and SWI models. Furthermore, the results of preliminary tests of DiCaSM are reported; these include tests related to the ability of the model to predict the SM content of surface and subsurface soil layers, as well as groundwater levels. The latter demonstrates how the groundwater recharge calculated from DiCaSM can be used as input into the groundwater model MODFLOW using aggregation and disaggregation algorithms (built into the interface utility). SWI has also been run successfully with hypothetical examples and was able to reproduce the results of some of the original examples of Bakker and Schaars ( 2005 ). In the subsequent articles, the results of applications to different catchments will be reported. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
3.
The integrated hydrological modelling system, IHMS, has been described in detail in Part 1 of this paper. The system comprises three models: Distributed Catchment Scale Model (DiCaSM), MODFLOW (v96 and v2000) and SWI. The DiCaSM simulates different components of the unsaturated zone water balance, including groundwater recharge. The recharge output from DiCaSM is used as input to the saturated zone model MODFLOW, which subsequently calculates groundwater flows and head distributions. The main objectives of this paper are: (1) to show the way more accurate predictions of groundwater levels in two Cyprus catchments can be obtained using improved estimates of groundwater recharge from the catchment water balance, and (2) to demonstrate the interface utility that simulates communication between unsaturated and saturated zone models and allows the transmission of data between the two models at the required spatial and temporal scales. The linked models can be used to predict the impact of future climate change on surface and groundwater resources and to estimate the future water supply shortfall in the island up to 2050. The DiCaSM unsaturated zone model was successfully calibrated and validated against stream flows with reasonable values for goodness of fit as shown by the Nash‐Sutcliffe criterion. Groundwater recharge obtained from the successful tests was applied at various spatial and temporal scales to the Kouris and Akrotiri catchments in Cyprus. These recharge values produced good estimates of groundwater levels in both catchments. Once calibrated, the model was run using a number of possible future climate change scenarios. The results showed that by 2050, groundwater and surface water supplies would decrease by 35% and 24% for Kouris and 20% and 17% for Akrotiri, respectively. The gap between water supply and demand showed a linear increase with time. The results suggest that IHMS can be used as an effective tool for water authorities and decision makers to help balance demand and supply on the island. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号