首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   1篇
地球物理   4篇
地质学   1篇
  2024年   1篇
  2021年   1篇
  2020年   1篇
  2014年   1篇
  2011年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The occurrence of preferential flow in the subsurface has often been shown in field experiments. However, preferential flow is rarely included in models simulating the hydrological response at the catchment scale. If it is considered, preferential flow parameters are typically determined at the plot scale and then transferred to larger-scale simulations. Here, we successfully used the optimization algorithm DiffeRential Evolution Adaptive Metropolis (DREAM) to calibrate a 3D physics-based dual-permeability model directly at the catchment scale. In order to keep computational costs of the optimization routine at a reasonable level, we limited the number of parameters to be calibrated to the ones that had been shown before to be most influential for the simulation of discharge. We also calibrated parameters of the matrix domain and the macropore domain with a fixed parameter ratio between soil layers instead of calibrating every layer separately. These ratios reflected observed depth profiles of soil hydraulic properties at our study site. The dual-permeability parameter sets identified during calibration were able to simulate observed discharge time series satisfactorily but did not outperform a calibrated single-domain reference model scenario. Saturated hydraulic conductivities of the macropore domain were calibrated such that they became very similar to matrix saturated hydraulic conductivities, thereby effectively removing the effect of macropores. This suggests that the incorporation of vertical preferential flow as represented by the dual-permeability approach was not relevant for reproducing the hydrometric response reasonably well in the studied catchment. We also tested the scale-invariance of the calibrated dual-permeability parameter sets by using the parameter sets performing best at catchment scale to simulate plot-scale bromide depth profiles obtained from tracer irrigation experiments. This parameter transfer proved to be not successful, indicating that soil hydraulic parameters are scale-variant, independent of the direction of parameter transfer.  相似文献   
2.
The effect of fracture network geometry on free convection in fractured rock is studied using numerical simulations. We examine the structural properties of fracture networks that control the onset and strength of free convection and the patterns of density-dependent flow. Applicability of the equivalent porous medium approach (EPM) is also tested, and recommendations are given, for which situations the EPM approach is valid. To date, the structural properties of fracture networks that determine free convective flow are examined only in few, predominantly simplified regular fracture networks. We consider fracture networks containing continuous, discontinuous, orthogonal and/or inclined discrete fractures embedded in a low-permeability rock matrix. The results indicate that bulk permeability is not adequate to infer the occurrence and magnitude of free convection in fractured rock. Fracture networks can inhibit or promote convection depending on the fracture network geometry. Continuous fracture circuits are the crucial geometrical feature of fracture networks, because large continuous fracture circuits with a large vertical extent promote convection. The likelihood of continuous fracture circuits and thus of free convection increases with increasing fracture density and fracture length, but individual fracture locations may result in great deviances in strength of convection between statistically equivalent fracture networks such that prediction remains subject to large uncertainty.  相似文献   
3.
4.
突发事件会引起大范围的地表水污染, 对城市供水水源的安全形成挑战, 严重威胁人民生命安全, 危害生态环境和经济社会稳定。地下水与地表环境联系较弱, 利用地下水作为应急水源是最安全的水资源保障措施。本研究以扬州城市规划区为例, 确定了规划区应急需水量为17.2万m3/d, 应急时长为15 d, 主要开采的第Ⅱ、Ⅲ承压含水层限采红线水位埋深分别为20 m、30 m, 根据研究区应急供水需求制定了4种应急供水方案。方案1和2为水源地集中供水, 方案3为分散式供水, 方案4为分散与集中式联合供水。依据工作区水文地质条件和地下水位监测数据, 基于HydroGeoSphere构建并校正了研究区三维地下水-地表水耦合数值模型, 利用数值模型分析了不同供水方案应急抽水引起的地下水位降落趋势及其与地下水开采红线的关系。研究表明, 分散与集中式联合供水方案可以明显减小工作区内的水位波动, 减缓水源地的供水压力, 降低地面沉降风险, 对现有管网的利用也较为充分, 可作为应急供水的首选方案。  相似文献   
5.
A multidisciplinary approach is presented here for quantifying land subsidence in a heavily pumped aquifer system with complex stratigraphy. The methodology consists in incorporating Terzaghi’s 1D instantaneous compaction principle into a 3D groundwater flow model that is then applied and calibrated to reproduce observed hydraulic heads and compaction for the Toluca Valley, Mexico. Differential Interferometric Synthetic Aperture Radar (D-InSAR), a generated 3D-geological model, extensometers, monitoring wells, and available literature are used to constrain the model. The D-InSAR measured subsidence, extensometers, and numerical simulations of subsidence agree relatively well. Simulations show that since regional subsidence began in the mid 1960s there has been up to 2 m of subsidence in the industrial corridor, where heavy pumping and thick clay layers are found. This study shows that an approach using various sources of data is useful in estimating and constraining the vertical component of the inelastic skeletal specific storage.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号