首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   1篇
地质学   1篇
  2018年   1篇
  2013年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
《Comptes Rendus Geoscience》2018,350(3):110-118
This note deals with the study of stress-sensitive relative permeability experimentally observed in low permeable sandstones. These sandstones are made up of quartz grains surrounded by permeable interfaces between grains and pores. A micromechanical model of relative permeability behaviour under loading highlights the role of the closure of interfaces. Morphological models adapted to permeable sandstones show conversely that the relative permeabilities do not depend on the loading.  相似文献   
2.
We consider stability of regimes of hydromagnetic thermal convection in a rotating horizontal layer with free electrically-conducting boundaries, to perturbations involving large spatial and temporal scales. Equations governing the evolution of weakly nonlinear mean perturbations are derived under the assumption that the α-effect is insignificant in the leading-order (e.g. due to a symmetry of the system). The mean-field equations generalise the standard equations of hydromagnetic convection: New terms emerge – a second-order linear operator representing the combined eddy diffusivity and quadratic terms associated with the eddy advection. If the perturbed CHM regime is nonsteady and insignificance of the α-effect in the system does not rely on the presence of a spatial symmetry, the combined eddy diffusivity operator also involves a nonlocal pseudodifferential operator. If the perturbed CHM state is almost symmetric, α-effect terms appear in the mean-field equations as well. Near a point of a symmetry-breaking bifurcation, cubic nonlinearity emerges in the equations. All the new terms are in general anisotropic. A method for evaluation of their coefficients is presented; it requires solution of a significantly smaller number of auxiliary problems than in a straightforward approach.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号