首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
测绘学   1篇
地球物理   1篇
  2015年   1篇
  2002年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
A ground validation problem of remotely sensed soil moisture data   总被引:1,自引:1,他引:0  
 As the use of space-based sensors to observe soil moisture is becoming more plausible, it is becoming necessary to validate the remotely sensed soil moisture retrieval algorithms. In this paper, measurements of point gauges on the ground are analyzed as a possible ground-truth source for the comparison with remotely sensed data. The design compares a sequence of measurements taken on the ground and from space. The authors review the mean square error of expected differences between the two systems by Ha and North (1994), which is applied to the Little Washita watershed using the soil moisture dynamics model developed by Entekhabi and Rodriguez-Iturbe (1994). The model parameters estimated by Yoo and Shin (1998) for the Washita `92 (relative) soil moisture data are used in this study. By considering about 20 pairs of ground- and space-based measure-ments (especially, for the same case as the Washita `92 that the space-based sensor visits the FOV once a day), the expected error was able to be reduced to approximately 10 of the standard deviation of the fluctuations of the system alone. This seems to be an acceptable level of tolerance for identifying biases in the retrieval algorithms.  相似文献   
2.
Successful development of approaches to quantify impacts of diverse landuse and associated agricultural management practices on ecosystem services is frequently limited by lack of historical and contemporary landuse data. We hypothesized that ground truth data from one year could be used to extrapolate previous or future landuse in a complex landscape where cropping systems do not generally change greatly from year to year because the majority of crops are established perennials or the same annual crops grown on the same fields over multiple years. Prior to testing this hypothesis, it was first necessary to classify 57 major landuses in the Willamette Valley of western Oregon from 2005 to 2011 using normal same year ground-truth, elaborating on previously published work and traditional sources such as Cropland Data Layers (CDL) to more fully include minor crops grown in the region. Available remote sensing data included Landsat, MODIS 16-day composites, and National Aerial Imagery Program (NAIP) imagery, all of which were resampled to a common 30 m resolution. The frequent presence of clouds and Landsat7 scan line gaps forced us to conduct of series of separate classifications in each year, which were then merged by choosing whichever classification used the highest number of cloud- and gap-free bands at any given pixel. Procedures adopted to improve accuracy beyond that achieved by maximum likelihood pixel classification included majority-rule reclassification of pixels within 91,442 Common Land Unit (CLU) polygons, smoothing and aggregation of areas outside the CLU polygons, and majority-rule reclassification over time of forest and urban development areas. Final classifications in all seven years separated annually disturbed agriculture, established perennial crops, forest, and urban development from each other at 90 to 95% overall 4-class validation accuracy. In the most successful use of subsequent year ground-truth data to classify prior year landuse, an overall 57-class accuracy of 75% was achieved despite the omission of 10 entire classes, most of which were annually disturbed or perennial crops grown on very few fields. Synthetic ground-truth data for the 2004 harvest year based on the most common landuse classes over the following 7 years classified 49 of 57 categories at an overall accuracy of 96% in a final version that included CLU polygon majority rule, default smoothing and aggregation, and forcing of urban development and forest from multi-year majority-rule.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号