首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   5篇
  国内免费   51篇
地球物理   2篇
地质学   101篇
综合类   2篇
自然地理   1篇
  2022年   2篇
  2021年   1篇
  2020年   4篇
  2018年   4篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   6篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2010年   2篇
  2009年   5篇
  2008年   5篇
  2007年   7篇
  2006年   9篇
  2005年   6篇
  2004年   8篇
  2003年   4篇
  2000年   4篇
  1998年   8篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有106条查询结果,搜索用时 15 毫秒
1.
In southeast Anatolia, there are number of tectonomagmatic units in the Kahramanmaraş–Malatya–Elazığ region that are important in understanding the geological evolution of the southeast Anatolian orogenic belt during the Late Cretaceous. These are (a) metamorphic massifs, (b) ophiolites, (c) ophiolite-related metamorphics and (d) granitoids. The granitoids (i.e. Göksun–Afşin in Kahramanmaraş, Doğanşehir in Malatya and Baskil in Elazığ) intrude all the former units in a NE–SW trending direction. The granitoid in Göksun–Afşin (Kahramanmaraş) region is mainly composed of granodioritic and granitic in composition. The granodiorite contains a number of amphibole-bearing mafic microgranular enclaves of different sizes, whereas the granite is intruded by numerous aplitic dikes. The granitoid rocks have typical calcalkaline geochemical features. The REE- and Ocean ridge granite-normalized multi-element patterns and tectonomagmatic discrimination diagrams, as well as biotite geochemistry suggest that the granitoids were formed in a volcanic arc setting. The K–Ar geochronology of the granitoid rocks yielded ages ranging from 85.76±3.17 to 77.49±1.91 Ma. The field, geochemical and geochronological data suggest the following Late Cretaceous tectonomagmatic scenario for southeast Anatolia. The ophiolites were formed in a suprasubduction zone tectonic setting whereas the ophiolite-related metamorphic rocks formed either during the initiation of intraoceanic subduction or late-thrusting (∼90 Ma). These units were then overthrust by the Malatya–Keban platform during the progressive elimination of the southern Neotethys. Thrusting of the Malatya–Keban platform over the ophiolites and related metamorphic rocks was followed by the intrusion of the granitoids (88–85 Ma) along the Tauride active continental margin in the southern Neotethys.  相似文献   
2.
The bimodal magmatism of central Jebilet is dated to 330.5+0.68?0.83 Ma by UPb dating on zircons. This age, similar to that of the syntectonic Jebilet cordierite-bearing granitoids, corresponds to the age of the local major tectonometamorphic event. The syntectonic plutonism of the Jebilet massif, composed of tholeiitic, alkaline, and peraluminous calc-alkaline series, is variegated. Magmas emplacement was favoured by the local extension induced by the motion along the western boundary of the Carboniferous basins of the Moroccan Meseta. The Jebilet massif exemplifies the activation of various magmas sources during an episode of continental convergence and crustal wrenching.  相似文献   
3.
The geological, structural and tectonic evolutions of the Yenisey Ridge fold-and-thrust belt are discussed in the context of the western margin of the Siberian craton during the Neoproterozoic. Previous work in the Yenisey Ridge had led to the interpretation that the fold belt is composed of high-grade metamorphic and igneous rocks comprising an Archean and Paleoproterozoic basement with an unconformably overlying Mesoproterozoic–Neoproterozoic cover, which was mainly metamorphosed under greenschist-facies conditions. Based on the existing data and new geological and zircon U–Pb data, we recognize several terranes of different age and composition that were assembled during Neoproterozoic collisional–accretional processes on the western margin of the Siberian craton. We suggest that there were three main Neoproterozoic tectonic events involved in the formation of the Yenisey Ridge fold-and-thrust belt at 880–860 Ma, 760–720 Ma and 700–630 Ma. On the basis of new geochronological and petrological data, we propose that the Yeruda and Teya granites (880–860 Ma) were formed as a result of the first event, which could have occurred in the Central Angara terrane before it collided with Siberia. We also propose that the Cherimba, Ayakhta, Garevka and Glushikha granites (760–720 Ma) were formed as a result of this collision. The third event (700–630 Ma) is fixed by the age of island-arc and ophiolite complexes and their obduction onto the Siberian craton margin. We conclude by discussing correlation of these complexes with those in other belts on the margin of the Siberian craton.  相似文献   
4.
The Amazonian Craton hosts world-class metallogenic provinces with a wide range of styles of primary precious, rare, base metal, and placer deposits. This paper provides a synthesis of the geological database with regard to granitoid magmatic suites, spatio temporal distribution, tectonic settings, and the nature of selected mineral deposits. The Archean Carajás Mineral Province comprises greenstone belts (3.04–2.97 Ga), metavolcanic-sedimentary units (2.76–2.74 Ga), granitoids (3.07–2.84 Ga) formed in a magmatic arc and syn-collisional setting, post-orogenic A2-type granites as well as gabbros (ca. 2.74 Ga), and anorogenic granites (1.88 Ga). Archean iron oxide-Cu-Au (IOCG) deposits were synchronous or later than bimodal magmatism (2.74–2.70 Ga). Paleoproterozoic IOCG deposits, emplaced at shallow-crustal levels, are enriched with Nb–Y–Sn–Be–U. The latter, as well as Sn–W and Au-EGP deposits are coeval with ca. 1.88 Ga A2-type granites. The Tapajós Mineral Province includes a low-grade meta-volcano-sedimentary sequence (2.01 Ga), tonalites to granites (2.0–1.87 Ga), two calc-alkaline volcanic sequences (2.0–1.95 Ga to 1.89–1.87 Ga) and A-type rhyolites and granites (1.88 Ga). The calc-alkaline volcanic rocks host epithermal Au and base metal mineralization, whereas Cu–Au and Cu–Mo ± Au porphyry-type mineralization is associated with sub-volcanic felsic rocks, formed in two continental magmatic arcs related to an accretionary event, resulting from an Andean-type northwards subduction. The Alta Floresta Gold Province consists of Paleoproterozoic plutono-volcanic sequences (1.98–1.75 Ga), generated in ocean–ocean orogenies. Disseminated and vein-type Au ± Cu and Au + base metal deposits are hosted by calc-alkaline I-type granitic intrusions (1.98 Ga, 1.90 Ga, and 1.87 Ga) and quartz-feldspar porphyries (ca. 1.77 Ga). Timing of the gold deposits has been constrained between 1.78 Ga and 1.77 Ga and linked to post-collisional Juruena arc felsic magmatism (e.g., Colíder and Teles Pires suites). The Transamazonas Province corresponds to a N–S-trending orogenic belt, consolidated during the Transamazonian cycle (2.26–1.95 Ga), comprising the Lourenço, Amapá, Carecuru, Bacajá, and Santana do Araguaia tectonic domains. They show a protracted tectonic evolution, and are host to the pre-, syn-, and post-orogenic to anorogenic granitic magmatism. Gold mineralization associated with magmatic events is still unclear. Greisen and pegmatite Sn–Nb–Ta deposits are related to 1.84 to 1.75 Ga late-orogenic to anorogenic A-type granites. The Pitinga Tin Province includes the Madeira Sn–Nb–Ta–F deposit, Sn-greisens and Sn-episyenites. These are associated with A-type granites of the Madeira Suite (1.84–1.82 Ga), which occur within a cauldron complex (Iricoumé Group). The A-type magmatism evolved from a post-collisional extension, towards a within-plate setting. The hydrothermal processes (400 °C–100 °C) resulted in albitization and formation of disseminated cryolite, pyrochlore columbitization, and formation of a massive cryolite deposit in the core of the Madeira deposit. The Rondônia Tin Province hosts rare-metal (Ta, Nb, Be) and Sn–W mineralization, which is associated with the São Lourenço-Caripunas (1.31–1.30 Ga), related to the post-collisional stage of the Rondônia San Ignácio Province (1.56–1.30 Ga), and to the Santa Clara (1.08–1.07 Ga) and Younger Granites of Rondônia (0.99–0.97 Ga) A-type granites. The latter are linked to the evolution of the Sunsás-Aguapeí Province (1.20–0.95 Ga). Rare-metal polymetallic deposits are associated with late stage peraluminous granites, mainly as greisen, quartz vein, and pegmatite types.  相似文献   
5.
《Geodinamica Acta》2013,26(3-4):185-195
Shearing of regional extent, involving granitoids and underlying mid-crustal rocks of the Sila massif (Calabria, Italy), is analysed in this paper. The deformed granitoids are affected by a wide NNW-SSE oriented deformation zone, stretching for about 60 km, from the neighbourhood of Cecita Lake to Cropani village. Meso- and micro-structures in granitoids, close to the boundary with underlying migmatitic paragneiss, indicate that deformation developed from melt-present to solid-state conditions. Simultaneous tectonics and magmatism activated a plutonic accretionary process at mid-crustal levels. This took place at about 300 Ma and involved hybrid magmas with a dominat contribution from a mantle source. The deformation regime remained steady for a long time during magma crystallization and cooling in subsolidus conditions. The regional top-to-the-W sense of shear in the present geographic coordinates, recorded in the deformed granitoids, seems geometrically consistent with the coeval direction of maximum extension found in another sector of the southern Hercynian belt, suggesting the original position of the Sila basement in this context. Magmatic ativity ended with the intrusion of mafic and felsic magams affected by a very weak deformation, ongoing during the final strain increments of the late-Hercynian stage.  相似文献   
6.
Haijin Xu  Changqian Ma  Kai Ye   《Chemical Geology》2007,240(3-4):238-259
Two stages of early Cretaceous post-orogenic granitoids are recognized in the Dabie orogen, eastern China, which recorded processes of extensional collapse of the orogen. The early stage granitoids ( 132 Ma) are foliated hornblende quartz monzonites and porphyritic monzogranites. They are of high-K calc-alkaline series and metaluminous to weakly peraluminous, with high K2O and low MgO contents (Mg# values: 32.0–46.0), they contain high Sr, low Y and heavy rare earth elements (HREE), and have high Sr/Y and (La/Yb)N ratios, without clear negative Eu, Sr and Ti anomalies. The early stage deformed granitoids have adakitic geochemical compositions and are equilibrated with residues rich in garnet and poor in anorthite-rich plagioclase, and thus indicate the existence of an over-thickened (> 50 km) crustal root beneath the orogen at  132 Ma. The later stage granitoids ( 128 Ma) are undeformed fine-grained monzogranites, fine-grained K-feldspar granites and coarse-grained K-feldspar granite-porphyry. They belong to a peraluminous and high-K calc-alkaline to shoshonite series, and display a flat HREE pattern and have strong negative Eu, Sr and Ti anomalies, with low Sr/Y and (La/Yb)N ratios. The late stage granitoids are equilibrated with residues rich in anorthite-rich plagioclase, hornblende, ilmenite/titanite and poor in garnet, indicating that the crust of the Dabie orogen became thinner (< 35 km) at  128 Ma. SHRIMP zircon U–Pb ages and changing compositional trends for these two stages of granitoids indicate that the over-thickened crust formed by the Triassic continental subduction/collision under the Dabie orogen remained until the early Cretaceous, and collapsed quickly in a few million years during the early Cretaceous.  相似文献   
7.
The voluminous Meso- to Neoarchean rocks exposed in the Beartooth Mountains of the northern Wyoming Province of western North America comprise the Long Lake Magmatic Complex (LLMC), a variably metamorphosed and deformed association of igneous and meta-igneous plutonic rocks with SiO2 ranging from at least 52 to 78 wt%. Within this compositional range, rock types include lineated amphibolites to hornblende-bearing gneisses of intermediate composition and multiple generations of foliated to unfoliated granitoids. Emplacement ages range between approximately 2.79 and 2.83 Ga, based on U–Pb zircon geochronology (SHRIMP). Field relations, elemental compositions, and geochronology indicate that these rocks do not represent a single fractional crystallization sequence, but rather, the LLMC was constructed by injection of numerous, discrete magmas as sill-like bodies over an ∼40 Ma period. Although there is a continuum of compositions in the LLMC, trace element abundances can be used to distinguish distinct sources and petrogenetic processes that can be broadly extrapolated to at least 3 compositional groupings: (1) trondhjemitic to granitic intrusive rocks with SiO2 >70 wt%, (2) variably metamorphosed granodioritic orthogneisses with SiO2 between 63 and 70 wt%, and (3) amphibole-bearing mafic to intermediate gneisses with SiO2 between 52 and 63 wt%. Despite the range of SiO2 contents, maximum LREE abundances are similar across the compositional range and, consequently, exhibit a wide range of (La/Yb)n ratios (∼20–130). All LLMC rocks share a relative depletion in HFSE abundances similar to modern convergent margin magmas. Initial Sr and Nd isotopic compositions across the compositional range are consistently offset from typical bulk silicate earth (BSE) values and preclude unaltered derivation from primitive or depleted mantle. Common Pb isotopic data define a single array that lies above model crustal growth curves and, along with the Nd and Sr data, suggest relatively uniform interaction with, or derivation from, older lithosphere. The combined isotopic and elemental data suggest the LLMC resulted from simultaneous, rapid, and voluminous production of diverse magmas that represent melting of isotopically similar, but compositionally distinct, crustal and mantle sources. Dynamically, Meso- to Neo-archean crustal growth in the northern Wyoming Province appears to require an environment similar to a modern ocean–continent convergent margin with a comparable rate of crustal production and diversity of magma series. The resultant crust and associated mantle lithosphere (keel) appear to have suffered little-to-no modification prior to Laramide (Cretaceous) uplift and exposure.  相似文献   
8.
The post-collisional late Hercynian Tanncherfi intrusive complex (TIC) is part of a widespread intrusive episode in the Moroccan Meseta. The complex contains a wide range of rock types, from monzogabbros to monzogranites. Two distinct magmatic series are recognized: (1) a potassic (shoshonitic) series consisting of monzogabbros, quartz monzonites and monzogranites; and (2) a sodic (granodioritic) series represented by quartz monzodiorites and granodiorites. All the Tanncherfi plutonic rocks display similar spider-diagram profiles, with LILE and LREE enrichment and Nb, Ta, Ti depletion, which are typical of subduction-related magmas. Combined major, trace element compositions and Sr, Nd isotopic results indicate that the two series have been derived from a LILE- and LREE-enriched continental lithospheric mantle source, under different partial melting and/or depth conditions. Intrusion of the Tanncherfi rocks was not temporally related to subduction and the enrichment of their source is likely to be linked to preceding subduction events. The two series evolved by fractional crystallization, of clinopyroxene, plagioclase, hornblende, biotite, K-feldspar and accessories (Fe–Ti oxide minerals, titanite, apatite and zircon) for the potassic series while the sodic series combined fractional crystallization with assimilation of felsic magmas with lower Sr isotopic ratio than the more mafic term of the series, the quartz monzodiorite. The intrusion of the potassic magmas (344±6 Ma) marks a major change in the tectonic regime of eastern Meseta. These magmas intruded during post-thickening uplift and extension, both probably favored by convective thinning of the lithosphere. This model provides a reasonable mechanism for the genesis of other Hercynian intrusive complexes in Morocco.  相似文献   
9.
目前对于华北克拉通东部晚中生代花岗质岩石的成因仍存在地幔柱、加厚/拆沉下地壳部分熔融、俯冲板片脱水导致地壳熔融等不同认识。辽西兴城地区晚中生代花岗质岩石主要由二长花岗岩、石英闪长岩、花岗斑岩和石英正长岩组成,岩浆成因锆石U-Pb同位素定年结果显示岩浆活动主要发生于晚侏罗世(156Ma)、早白垩世早期(139Ma)、早白垩世中期(130~125Ma)。岩石地球化学测试分析结果显示岩石属于高钾钙碱性系列且具有富集K、Pb等大离子亲石元素而相对亏损Nb、Ta、Ti等高场强元素等活动陆缘岩浆岩特点,表明辽西地区晚中生代岩浆活动的发生与俯冲作用有关。晚侏罗世-早白垩世早期(156~139Ma)花岗质岩石地球化学特征与I型花岗岩类似,同时具有富集的Hf同位素组成(εHf(t)=-22.70~-18.66)和古老的Hf同位素二阶段模式年龄(tDM2=2387~2767Ma),其初始岩浆可能来源于古老中上地壳的部分熔融;形成于130Ma的花岗质岩石同样具有与I型花岗岩相类似的岩石地球化学特征,但其Hf同位素组成突变为亏损(εHf(t)=+3.64~+6.22、tDM1=537~969Ma),其初始岩浆起源于新元古代新生地壳物质的部分熔融并混入少量亏损地幔物质组分;形成于125Ma的花岗质岩石为碱性A型花岗岩,岩石地球化学特征与其他岩石有所不同,具有负的εHf(t)值(-17.30~-11.56)和相对古老的Hf同位素二阶段年龄(tDM2=1917~2278Ma),初始岩浆可能起源于较为古老的中下地壳部分熔融并有幔源物质的参与。华北克拉通东部形成于160~139Ma的花岗质岩石具有I型、高钾钙碱性、与埃达克质岩石类似的高Sr/Y、低Y含量特征和富集的Hf同位素组成,而形成于130~120Ma的花岗质岩石具有A型、碱性、与典型岛弧岩浆岩类似的岩石地球化学特征和相对亏损的Hf同位素组成,同时晚中生代岩浆活动具有向洋年轻化的特点,表明华北克拉通东部156~139Ma期间可能受到古太平洋板块的持续俯冲作用,而139~130Ma古太平洋俯冲板片开始回撤,130~125Ma进入古太平洋俯冲板片持续回撤导致的强烈区域伸展作用阶段。古太平洋俯冲板片脱水交代岩石圈地幔并形成幔源岩浆,幔源岩浆不断底侵作用于古老/新生地壳使其发生部分熔融为花岗质岩石提供岩浆来源。  相似文献   
10.
Geochemistry of the Sub-Himalayan foreland basin Siwalik sediments has been used for interpreting the nature of the source rocks. This study has shown that the compositional changes are a function of stratigraphic height, demonstrated by the upward increase of P2O5, Na2O, CaO, MgO and SiO2 content from Lower to the Upper Siwalik rocks. On the other hand, K2O, Fe2O3, TiO2 and Al2O3 show decrease with the increasing stratigraphic height. These trends are a clear reflection of time-controlled changes in the source lithology. Ratios such as Eu/Eu*, (La/Lu)cn, La/Sc, Th/Sc, La/Co, and Cr/Th suggest a prominent felsic source area for the Siwalik sediments. Chondrite-normalized REE pattern with LREE enrichment and moderately flat HREE pattern with sharp negative Eu anomaly are attributed to a felsic source. Contrary to the existing belief, this study has ruled out any contribution from the mafic sources and highlighted the compositional similarities of Siwalik sediments with the crustal proxies like PAAS, NASC and UCC. The geochemical data point to a significant role played by the Precambrian and early Paleozoic granitic rocks of the Himalayan tectogene in shaping the composition of the foreland sediments. The variable CIA values and marked depletion in Na, Mg and Ca exhibited by the Lower, Middle and Upper Siwalik sediments reflect variable climatic zones and variations in the rate of tectonic uplift of the source area. Our results demonstrate that in the Lower Siwalik and part of the Middle Siwalik, Higher Himalayan Crystalline sequence (HHCS) was the primary source area with minor contributions by the meta-sedimentary succession of the Lesser Himalaya. Later, during the deposition of the upper part of the Middle Siwalik and Upper Siwalik, the source terrain switched positions. These two prominent source terrains supplied sediments in steadily changing proportion through time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号