首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地球物理   2篇
地质学   4篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  1997年   1篇
  1996年   1篇
排序方式: 共有6条查询结果,搜索用时 106 毫秒
1
1.
A compilation of gravity data from the Upper Rhine Graben (URG) is presented that includes all the main data sources from its German and French parts. This data is used to show that the URG consists of, at least, two arc-shaped and asymmetric rift units that tectonically are the basic building blocks of the graben. In this sense the URG does not differ from other continental rifts, such as the African rifts. This division should replace the now classical geomorphologic division of the URG into three segments, based on their different trends. Moreover, the gravity suggests that the faults in the central and southern segments are continuous and have the same trend, appearing to respond as a single kinematic unit. Changes in the gravity field in the graben are shown to reflect not only the structure of the graben, but also the highly variable composition of the basement. In this respect, the URG is quite different from some other Tertiary continental rifts, where possible changes in the composition of the basement are mostly masked in the gravity field by the effect of the overlying low-density sediments. This characteristic is used to study the extent of some of the main basement units that underlie the graben.  相似文献   
2.
One of the puzzling features of the southern end of the Rhine graben is the Dinkelberg-Tabular Jura block on the eastern shoulder of the graben. It is dissected by a large number of faults, the most notable ones forming a field of narrow little grabens and half-grabens whose bordering faults converge at the level of the Middle Triassic evaporites, which points to décollement at that horizon. The little grabens were traditionally considered to be of Oligocene age, coeval with the main taphrogenesis of the Rhine graben. Two hypotheses were offered for their formation, one ascribing them to extension on the extrados of large basement folds, the other to gravity sliding on paleoslopes. Recent field work uncovered overwhelming evidence for an Eocene age of the little grabens, the time of the initial phase of Rhine graben formation. At that time there were neither large basement folds nor paleoslopes of any significance, and therefore the two hypotheses offered until now do not work. However, the map-view pattern of the field of faults offers a somewhat unusual way out of the dilemma. This pattern is most prominently displayed in the Dinkelberg area north of the Rhine. There a lane of narrow décollement grabens with a mean NNE strike is confined within the NW- striking Dinkelberg graben, which is much wider and rooted in the basement. It is also very shallow, with a subsidence on the order of 100 m. The lane of décollement grabens forms a dextral en-échelon pattern with respect to the Dinkelberg graben, suggesting stretching of the post-evaporite sequence above a basement essentially extended by strike slip. This model, though not as clearly expressed, is also compatible with the data in the rest of the Dinkelberg-Tabular Jura block. It also fits surprisingly well a theoretical model by Withjack and Scheiner (1982) that predicts a dominance of strike-slip in the marginal area of a system consisting of extension superimposed on doming.  相似文献   
3.
Many theoretical models predict that arrested dykes may generate major grabens at rift-zone surfaces. Arrested dyke tips in eroded rift zones, however, are normally not associated with major grabens or normal faults that could be generated by dyke-induced stresses ahead of the tips, and normal faults and grabens tend to be less common in those parts of eroded rift zones where dykes are comparatively abundant. Similarly, there are feeder dykes, as well as dykes arrested a few metres below the surface, that do not generate faults or grabens at the surface. Here I propose that this discrepancy between theoretical models and field observations may be explained by the mechanical layering of the crust. Numerical models presented here show that abrupt changes in Young's moduli, layers with high dyke-normal compressive stresses (stress barriers), and weak, horizontal contacts have large effects on the dyke-induced stress fields. For the models considered, the surface tensile stresses induced by arrested dykes are normally too small to lead to significant fault or graben formation at the rift-zone surface. The only significant dyke-induced surface tensile stresses (2 MPa) in these models are for a dyke tip arrested at 1 km depth below the surface of a rift zone with a weak contact at 400 m depth and subject to extension. That tensile stress, however, peaks above the ends of the weak horizontal contact, which, in the model considered, occur at distances of 4 km to either side of the dyke, and shows no simple relation to the depth to the dyke tip. Thus, for a layered crust with weak contacts, straightforward inversion of surface geodetic data to infer dyke geometries may result in unreliable results.Editorial responsibility: A. Woods  相似文献   
4.
Several two-dimensional structures are modelled for vertical electrical soundings in arrays parallel and perpendicular to the strike of the structure. The models are a horst and a graben within a three-layer medium, a cliff over two layers, and heterogeneities around the electrodes. Apparent resistivity curves are shown for different model parameters and different distances to the two-dimensional structures. Some of the features on the shape of these curves are inflections that may be misinterpreted as fictitious layers, of slopes greater than 45°; some features are simply anomalous peaks. One-dimensional interpretation of a two-dimensional graben model has been performed, in order to show typical errors when 2D structures are interpreted as one-dimensional. A real case corresponding to a landfill near Barcelona and showing strong lateral and topographic effects is presented. This represents combined effects of the above theoretical 2D models.  相似文献   
5.
Tertiary and/or Quaternary tectonic faulting is documented in three areas of southernmost Illinois: the Fluorspar Area Fault Complex (FAFC) in Pope and Massac Counties, the Ste. Genevieve Fault Zone (SGFZ) in Alexander and Union Counties, and the Commerce Fault Zone (CFZ) in Alexander County.

In the FAFC, faults that strike NE and NNE displace Mounds Gravel (late Miocene to early Pleistocene) and, locally, the Metropolis terrace gravel (Pleistocene; pre-Woodfordian). No Woodfordian or younger deposits are deformed. Faults typically outline narrow, linear grabens that formed under tension with a component of strike slip.

North-south to NW-trending vertical faults near the southeast end of the SGFZ displace Eocene sediments. Again, faults outline narrow grabens and show indications of strike slip. Deformed Quaternary sediments have not been observed.

The CFZ, which trends northeast, displaces Mounds Gravel in Illinois and units as young as Peoria Silt (Woodfordian) in Missouri. Quaternary movement has been interpreted as right-lateral strike-slip. The CFZ coincides with a subtle gravity and magnetic lineament and seems to reflect a major feature in the basement. Surface expression in Illinois is subtle, but mafic and ultramafic intrusions, hydrothermal alteration and small faults align with the Commerce geophysical lineament. Earthquake foci in Missouri and Illinois lie on or close to the CFZ; some focal mechanisms fit the fault trend.

Among these structures, only the CFZ exhibits slip that conforms to the current stress field (principal compressive stress axis E-W to ENE-WSW). Possibly, the stress field changed during Neogene time. Alternatively, high fluid pressures or local stress concentrations may have induced slip on less favorably oriented fractures. Tighter constraints are needed on timing, magnitude, and direction of Neogene displacement.  相似文献   

6.
We present a series of high-resolution seismic reflection lines across the Yizre'el valley, which is the largest active depression in Israel, off the main trend of the Dead Sea rift. The new seismic reflection data is of excellent quality and shows that the valley is dissected into numerous small blocks, separated by active faults. The Yizre'el valley is found to consist of a series of half grabens, rather than a single half graben, or a symmetrical graben. The faults are generally vertical and appear to have a dominant strike-slip component, but some dip-slip is also evident. A marked zone of compression near Megido is associated with the intersection of the two largest faults in the valley, the Carmel fault and the Gideon fault. Variable trend of the faults reflects the complexity of the local geology along the boundary between the wide NW–SE trending Farah–Carmel fault zone and the E–W trending basins and ranges in the Lower Galilee. This tectonic complexity is likely to result from a highly variable stress pattern, modified by the structures inside it. Normal faulting in the valley occurred at an early stage of its development as a tectonic depression. However, strike-slip motion on the Carmel fault, and possibly also on some of the other faults, appears to have started together with the onset of normal faulting. Earthquake hazard in the area appears to be uniform as faults are distributed throughout the Yizre'el valley.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号