首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3458篇
  免费   866篇
  国内免费   1041篇
测绘学   85篇
大气科学   1475篇
地球物理   951篇
地质学   1705篇
海洋学   721篇
天文学   33篇
综合类   173篇
自然地理   222篇
  2024年   22篇
  2023年   30篇
  2022年   104篇
  2021年   105篇
  2020年   122篇
  2019年   170篇
  2018年   121篇
  2017年   158篇
  2016年   142篇
  2015年   164篇
  2014年   245篇
  2013年   195篇
  2012年   206篇
  2011年   272篇
  2010年   187篇
  2009年   273篇
  2008年   263篇
  2007年   327篇
  2006年   251篇
  2005年   246篇
  2004年   204篇
  2003年   176篇
  2002年   184篇
  2001年   135篇
  2000年   129篇
  1999年   128篇
  1998年   138篇
  1997年   117篇
  1996年   109篇
  1995年   77篇
  1994年   74篇
  1993年   51篇
  1992年   59篇
  1991年   56篇
  1990年   31篇
  1989年   23篇
  1988年   32篇
  1987年   10篇
  1986年   3篇
  1985年   8篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   4篇
  1979年   1篇
  1978年   4篇
  1971年   1篇
  1954年   1篇
排序方式: 共有5365条查询结果,搜索用时 15 毫秒
1.
We model the subnebulae of Jupiter and Saturn wherein satellite accretion took place. We expect each giant planet subnebula to be composed of an optically thick (given gaseous opacity) inner region inside of the planet’s centrifugal radius (where the specific angular momentum of the collapsing giant planet gaseous envelope achieves centrifugal balance, located at rCJ ∼ 15RJ for Jupiter and rCS ∼ 22RS for Saturn) and an optically thin, extended outer disk out to a fraction of the planet’s Roche-lobe (RH), which we choose to be ∼RH/5 (located at ∼150 RJ near the inner irregular satellites for Jupiter, and ∼200RS near Phoebe for Saturn). This places Titan and Ganymede in the inner disk, Callisto and Iapetus in the outer disk, and Hyperion in the transition region. The inner disk is the leftover of the gas accreted by the protoplanet. The outer disk may result from the nebula gas flowing into the protoplanet during the time of giant planet gap-opening (or cessation of gas accretion). For the sake of specificity, we use a solar composition “minimum mass” model to constrain the gas densities of the inner and outer disks of Jupiter and Saturn (and also Uranus). Our model has Ganymede at a subnebula temperature of ∼250 K and Titan at ∼100 K. The outer disks of Jupiter and Saturn have constant temperatures of 130 and 90 K, respectively.Our model has Callisto forming in a time scale ∼106 years, Iapetus in 106-107 years, Ganymede in 103-104 years, and Titan in 104-105 years. Callisto takes much longer to form than Ganymede because it draws materials from the extended, low density portion of the disk; its accretion time scale is set by the inward drift times of satellitesimals with sizes 300-500 km from distances ∼100RJ. This accretion history may be consistent with a partially differentiated Callisto with a ∼300-km clean ice outer shell overlying a mixed ice and rock-metal interior as suggested by Anderson et al. (2001), which may explain the Ganymede-Callisto dichotomy without resorting to fine-tuning poorly known model parameters. It is also possible that particulate matter coupled to the high specific angular momentum gas flowing through the gap after giant planet gap-opening, capture of heliocentric planetesimals by the extended gas disk, or ablation of planetesimals passing through the disk contributes to the solid content of the disk and lengthens the time scale for Callisto’s formation. Furthermore, this model has Hyperion forming just outside Saturn’s centrifugal radius, captured into resonance by proto-Titan in the presence of a strong gas density gradient as proposed by Lee and Peale (2000). While Titan may have taken significantly longer to form than Ganymede, it still formed fast enough that we would expect it to be fully differentiated. In this sense, it is more like Ganymede than like Callisto (Saturn’s analog of Callisto, we expect, is Iapetus). An alternative starved disk model whose satellite accretion time scale for all the regular satellites is set by the feeding of planetesimals or gas from the planet’s Roche-lobe after gap-opening is likely to imply a long accretion time scale for Titan with small quantities of NH3 present, leading to a partially differentiated (Callisto-like) Titan. The Cassini mission may resolve this issue conclusively. We briefly discuss the retention of elements more volatile than H2O as well as other issues that may help to test our model.  相似文献   
2.
Reconnaissance seismic shot in 1971/72 showed a number of well defined seismic anomalies within the East Sengkang Basin which were interpreted as buried reefs. Subsequent fieldwork revealed that Upper Miocene reefs outcropped along the southern margin of the basin. A drilling programme in 1975 and 1976 proved the presence of shallow, gas-bearing, Upper Miocene reefs in the northern part of the basin. Seismic acquisition and drilling during 1981 confirmed the economic significance of these discoveries, with four separate accumulations containing about 750 × 109 cubic feet of dry gas in place at an average depth of 700 m. Kampung Baru is the largest field and contains over half the total, both reservoir quality and gas deliverability are excellent. Deposition in the East Sengkang Basin probably started during the Early Miocene. A sequence of Lower Miocene mudstones and limestones unconformably overlies acoustic basement which consists of Eocene volcanics. During the tectonically active Middle Miocene, deposition was interrupted by two periods of deformation and erosion. Carbonate deposition became established in the Late Miocene with widespread development of platform limestones throughout the East Sengkang Basin. Thick pinnacle reef complexes developed in the areas where reef growth could keep pace with the relative rise in sea level. Most reef growth ceased at the end of the Miocene and subsequent renewed clastic sedimentation covered the irregular limestone surface. Late Pliocene regression culminated in the Holocene with erosion. The Walanae fault zone, part of a major regional sinistral strike-slip system, separates the East and West Sengkang Basins. Both normal and reverse faulting are inferred from seismic data and post Late Pliocene reverse faulting is seen in outcrop.  相似文献   
3.
Two sites of the Deep Sea Drilling Project in contrasting geologic settings provide a basis for comparison of the geochemical conditions associated with marine gas hydrates in continental margin sediments. Site 533 is located at 3191 m water depth on a spit-like extension of the continental rise on a passive margin in the Atlantic Ocean. Site 568, at 2031 m water depth, is in upper slope sediment of an active accretionary margin in the Pacific Ocean. Both sites are characterized by high rates of sedimentation, and the organic carbon contents of these sediments generally exceed 0.5%. Anomalous seismic reflections that transgress sedimentary structures and parallel the seafloor, suggested the presence of gas hydrates at both sites, and, during coring, small samples of gas hydrate were recovered at subbottom depths of 238m (Site 533) and 404 m (Site 568). The principal gaseous components of the gas hydrates wer methane, ethane, and CO2. Residual methane in sediments at both sites usually exceeded 10 mll?1 of wet sediment. Carbon isotopic compositions of methane, CO2, and ΣCO2 followed parallel trends with depth, suggesting that methane formed mainly as a result of biological reduction of oxidized carbon. Salinity of pore waters decreased with depth, a likely result of gas hydrate formation. These geochemical characteristics define some of the conditions associated with the occurrence of gas hydrates formed by in situ processes in continental margin sediments.  相似文献   
4.
Y.C. Minh  W.M. Irvine   《New Astronomy》2006,11(8):594-599
The large-scale structure associated with the 2′N HNCO peak in Sgr B2 [Minh, Y.C., Haikala, L., Hjalmarson, Å., Irvine, W.M., 1998. ApJ 498, 261 (Paper I)] has been investigated. A ring-like morphology of the HNCO emission has been found; this structure may be colliding with the Principal Cloud of Sgr B2. This “HNCO Ring” appears to be centered at (l,b) = (0.7°,−0.07°), with a radius of 5 pc and a total mass of 1.0 × 105 to 1.6 × 106 M. The expansion velocity of the Ring is estimated to be 30–40 km s−1, which gives an expansion time scale of 1.5 × 105 year. The morphology suggests that collision between the Ring and the Principal Cloud may be triggering the massive star formation in the Sgr B2 cloud sequentially, with the latest star formation taking place at the 2′N position. The chemistry related to HNCO is not certain yet, but if it forms mainly via reaction with the evaporated OCN from icy grain mantles, the observed enhancement of the HNCO abundance can be understood as resulting from shocks associated with the collision between the Principal Cloud and the expanding HNCO Ring.  相似文献   
5.
Based on the Intensive Field Campaign(IFC-1)data of Boreal Ecosystem-Atmosphere Study(BOREAS).a three-dimensional meso-β scale model is used to simulate the effect of boreal forests onthe lower atmosphere.A fine horizontal resolution of 2 km×2 km is used in order to distinguish thevegetative heterogeneity in the boreal region.A total of 20×25 grid points cover the entire sub-modeling area in BOREAS' South Study Area(SSA).The ecosystem types and their coverage ineach grid square are extracted from the North American Land Cover Characteristics Data Base(NALCCD)generated by the U.S.Geographical Survey(USGS)and the University of Nebraska-Lincoln(UNL).The topography of the study area is taken from the Digital Elevation Map(DEM)of USGS.The model outputs include the components of the energy balance budget within the canopyand at the ground.the turbulence parameters in the atmospheric boundary layer and the wind.temperature and humidity profiles extending up to a height of 1500 m.In addition to the fine timeand spatial step,the unique feature of the present model is the incorporation of both dynamic andbiological effects of the Boreal forest into the model parameterization scheme.The model resultscompare favorably with BOREAS' IFC-1 data in 1994 when the forest was in the luxuriant growingperiod.  相似文献   
6.
流褶层与韧变带是地壳拉伸变形,顺层固态流变作用下的产物。流褶层是以原始层理为变形面或再经递进变形的褶皱变形岩层或岩石共生组合层位。韧变带具明显的层控性,受岩石成分和应变程度控制,不同环境和不同成分岩石的韧变带具有相异的组合型式和变形机制,井具有一定的递变规律。流褶层和韧变带可分属不同层位,但流褶层可实现向韧变带的转化。  相似文献   
7.
本文根据扫描电镜对从漓江河谷钻孔中的泥砾层取得的481粒石英砂表面形态特证研究结果:石英砂多数颗粒保持棱角状外形并遭受不同程度的磨蚀,具阶状贝壳断口,平直或弧形刮削面和多向擦痕,沿解理面破碎呈“V”字形沟和撞击碟形坑,以及微溶蚀孔、隙、蜂窝状溶孔群和SiO_2再沉积等表面形态结构特征。认为它是在第四纪古地理湿热气候条件下泥石流沉积的产物,物源可能来自境内或周边的泥盆系砂岩和境外的花岗岩。  相似文献   
8.
1IntroductionOne of the key factors related to basin geody-namics is deep process controlling formation and evolution of sedimentary basin. Depth and tempera-ture of asthenosphere,existence of mantle plume,occurrence of mantle melting,and amounts of melts under depressurization during thinning of lithosphere are controlling factors influenced formation and characteristics of extensional basin directly (Li,1994). Rifting is probably governed by frictional forces exerted on the base of litho…  相似文献   
9.
The grain-scale processes of peridotite melting were examined at 1,340°C and 1.5 GPa using reaction couples formed by juxtaposing pre-synthesized clinopyroxenite against pre-synthesized orthopyroxenite or harzburgite in graphite and platinum-lined molybdenum capsules. Reaction between the clinopyroxene and orthopyroxene-rich aggregates produces a melt-enriched, orthopyroxene-free, olivine + clinopyroxene reactive boundary layer. Major and trace element abundance in clinopyroxene vary systematically across the reactive boundary layer with compositional trends similar to the published clinopyroxene core-to-rim compositional variations in the bulk lherzolite partial melting studies conducted at similar PT conditions. The growth of the reactive boundary layer takes place at the expense of the orthopyroxenite or harzburgite and is consistent with grain-scale processes that involve dissolution, precipitation, reprecipitation, and diffusive exchange between the interstitial melt and surrounding crystals. An important consequence of dissolution–reprecipitation during crystal-melt interaction is the dramatic decrease in diffusive reequilibration time between coexisting minerals and melt. This effect is especially important for high charged, slow diffusing cations during peridotite melting and melt-rock reaction. Apparent clinopyroxene-melt partition coefficients for REE, Sr, Y, Ti, and Zr, measured from reprecipitated clinopyroxene and coexisting melt in the reactive boundary layer, approach their equilibrium values reported in the literature. Disequilibrium melting models based on volume diffusion in solid limited mechanism are likely to significantly underestimate the rates at which major and trace elements in residual minerals reequilibrate with their surrounding melt. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
10.
Flaring of associated gas from oil exploitation has several consequences on the environment. This study explores the spatial variability effects of gas flaring on the growth and development of cassava (Manihot esculenta), waterleaf (Talinum triangulare), and pepper (Piper spp.) crops commonly cultivated in the Niger Delta, Nigeria. Data was collected on soil and atmospheric temperature and moisture at a 20-m interval, starting at 40 m from the flare point to a distance of 140 m. Lengths and widths of crop leaves, height of crop plants and cassava yields were measured at the specified distances. The amino acid, ascorbic acid, starch, and sugar constituents of the cassava yields were determined. The results suggest that a spatial gradient exists in the effects of gas flares on crop development. Retardation in crop development manifests in decreased dimensions of leaf lengths and widths of cassava and pepper crops closer to the gas flare point. Statistical analysis also confirms that cassava yields are higher at locations further away from the flare point. In addition, the amount of starch and ascorbic acid in cassava decreased when the plant is grown closer to the gas flare. High temperatures around the gas flare appear to be the most likely cause of this retardation. The waterleaf crop, on the other hand, appears to thrive better around the gas flare point.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号