首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1880篇
  免费   32篇
  国内免费   138篇
测绘学   78篇
大气科学   110篇
地球物理   495篇
地质学   987篇
海洋学   188篇
天文学   41篇
综合类   4篇
自然地理   147篇
  2024年   15篇
  2023年   40篇
  2022年   51篇
  2021年   68篇
  2020年   162篇
  2019年   97篇
  2018年   126篇
  2017年   187篇
  2016年   124篇
  2015年   140篇
  2014年   236篇
  2013年   365篇
  2012年   222篇
  2011年   10篇
  2010年   11篇
  2009年   15篇
  2008年   8篇
  2007年   11篇
  2006年   18篇
  2005年   16篇
  2004年   19篇
  2003年   11篇
  2002年   26篇
  2001年   8篇
  2000年   9篇
  1999年   8篇
  1998年   11篇
  1997年   5篇
  1996年   12篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1980年   2篇
  1978年   1篇
排序方式: 共有2050条查询结果,搜索用时 31 毫秒
1.
Beaver dam analogues (BDAs) are a cost-effective stream restoration approach that leverages the recognized environmental benefits of natural beaver dams on channel stability and local hydrology. Although natural beaver dams are known to exert considerable influence on the hydrologic conditions of a stream system by mediating geomorphic processes, nutrient cycling, and groundwater–surface water interactions, the impacts of beaver-derived restoration methods on groundwater–surface water exchange are poorly characterized. To address this deficit, we monitored hyporheic exchange fluxes and streambed porewater biogeochemistry across a sequence of BDAs installed along a central Wyoming stream during the summer of 2019. Streambed fluxes were quantified by heat tracing methods and vertical hydraulic gradients. Biogeochemical activity was evaluated using major ion porewater chemistry and principal component analysis. Vertical fluxes of approximately 1.0 m/day were observed around the BDAs, as was the development of spatially heterogeneous zones of nitrate production, groundwater upwelling, and anaerobic reduction. Strong contrasts in hyporheic zone processes were observed across BDAs of differing sizes. This suggests that structures may function with size-dependent behaviour, only altering groundwater–surface water interactions after a threshold hydraulic step height is exceeded. Patterns of hyporheic exchange and biogeochemical cycling around the studied BDAs resemble those around natural beaver dams, suggesting that BDAs may provide comparable benefits to channel complexity and near-stream function over a 1-year period.  相似文献   
2.
Two algorithms for in-situ detection and identification of vertical free convective and double-diffusive flows in groundwater monitoring wells or boreholes are proposed. With one algorithm the causes (driving forces) and with the other one the effects (convection or double-diffusion) of vertical transport processes can be detected based on geophysical borehole measurements in the water column. Five density-driven flow processes are identified: thermal, solutal, and thermosolutal convection leading to an equalization, as well as saltfingers and diffusive layering leading to an intensification of a vertical density gradient. The occurrence of density-driven transport processes could be proven in many groundwater monitoring wells and boreholes; especially shallow sections of boreholes or groundwater monitoring wells are affected dramatically by such vertical flows. Deep sections are also impaired as the critical threshold for the onset of a density-driven flow is considerably low. In monitoring wells or boreholes, several sections with different types of density-driven vertical flows may exist at the same time. Results from experimental investigations in a medium-scale testing facility with high aspect ratio (height/radius = 19) and from numerical modeling of a water column agree well with paramters of in-situ detected convection cells.  相似文献   
3.
A system of numerical tools to predict the non-local long-term impact of large-scale constructions on the environment is described. The predictions have to be results of successive examination of free water oscillations, turbulent boundary layers on the sea bottom, and turbulent pulsation effects on sediment transport. Numerical results related to free water oscillations in diverse gulfs are shown, and non-local effects of the dam construction are found for an example of the Baltic Sea. Feasibility of suggested tools for turbulent flow is manifested.  相似文献   
4.
An extensive experimental and computational investigation of the combined and separate effects of free surface and body on the lift characteristics of a pair of fins attached to a strut and fin alone is conducted. The results reveal that the free-surface effect becomes significant when the depth of submergence to chord ratio (H/c) is less than three. The effect of the strut is also realized for shallower depth of submergence of the fins through free-surface deformation leading to a significant change in the incidence angle of the flow to the fins. The numerical results based on the Higher Order Boundary Element Method with the linearized free-surface condition show good agreement with the experimental results for fin (foil) alone even at shallow submergence, but some discrepancies appear for the fin attached to the strut at higher speeds mostly due to the neglect of the nonlinear free-surface effect.  相似文献   
5.
This paper describes the extension of a fluid-flow simulations method to capture the free surface evolution around a full-scale Tension Leg Platform (TLP). The focus is on the prediction of the resulting hydrodynamic loading on the various elements of the TLP in turbulent flow conditions and, in particular, on quantifying the effects of the free surface distortion on this loading. The basic method uses finite-volume techniques to discretize the differential equations governing conservation of mass and momentum in three dimensions. The time-averaged forms of the equations are used, and the effects of turbulence are accounted for by using a two-equation, eddy-viscosity closure. The method is extended here via the incorporation of surface-tracking algorithm on a moving grid to predict the free-surface shape. The algorithm was checked against experimental measurements from two benchmark flows: the flow over a submerged semi-circular cylinder and the flow around a floating parabolic hull. Predictions of forces on a model TLP were then obtained both with and without allowing for the deformation of the free surface. The results suggest that the free surface effects on the hydrodynamic loads are small for the values of Froude number typically encountered in offshore engineering practice.  相似文献   
6.
An applied Fourier transform computation for the hydrodynamic wave-resistance coefficient is shown, oriented to potential flows with a free surface and infinity depth. The presence of a ship-like body is simulated by its equivalent pressure disturbance imposed on the un-perturbed free surface, where a linearized free surface condition is used. The wave-resistance coefficient is obtained from the wave-height downstream. Two examples with closed solutions are considered: a submerged dipole, as a test-case, and a parabolic pressure distribution of compact support. In the three dimensional case, a dispersion relation is included which is a key resource for an inexpensive computation of the wave pattern far downstream like fifteen ship-lengths.  相似文献   
7.
This paper describes the simulation of the flow of a viscous incompressible Newtonian liquid with a free surface. The Navier–Stokes equations are formulated using a streamline upwind Petrov–Galerkin scheme, and solved on a Q-tree-based finite element mesh that adapts to the moving free surface of the liquid. Special attention is given to fitting the mesh correctly to the free surface and solid wall boundaries. Fully non-linear free surface boundary conditions are implemented. Test cases include sloshing free surface motions in a rectangular tank and progressive waves over submerged cylinders.  相似文献   
8.
Abstract

With the large-scale development and utilization of ocean resources and space, it is inevitable to encounter existing submarine facilities in pile driving areas, which necessitates a safety assessment. In this article, by referring to a wharf renovation project as a reference, the surrounding soil response and buried pipe deformation during pile driving in a near-shore submarine environment are investigated by three-dimensional (3D) numerical models that consider the pore water effect. Numerical studies are carried out in two different series: one is a case of a single pile focusing on the effect of the minimum plane distance of the pile–pipe, and the other is a case of double piles focusing on the effect of the pile spacing.  相似文献   
9.
By applying the perturbation theory to theXYZ algorithm (a kind of variational method), the difference f in free vibration frequencies between sphere and ellipsoid was approximated as , where i and i (i = x,y andz) (i=x, y andz) are aspherical coefficients and asphericities of the ellipsoid, respectively. We developed an analytic method to compute the aspherical coefficients719-4 by using theXYZ algorithm. A numerical example was given for an ellipsoidal olivine, and an attempt was made to estimate the asphericities of the specimen by a least-squares method, based on the relationship between frequency shift and asphericity.  相似文献   
10.
Ice and snow have often helped physicists understand the world. On the contrary it has taken them a very long time to understand the flow of the glaciers. Naturalists only began to take an interest in glaciers at the beginning of the 19th century during the last phase of glacier advances. When the glacier flow from the upslope direction became obvious, it was then necessary to understand how it flowed. It was only in 1840, the year of the Antarctica ice sheet discovery by Dumont d'Urville, that two books laid the basis for the future field of glaciology: one by Agassiz on the ice age and glaciers, the other one by canon Rendu on glacier theory. During the 19th century, ice flow theories, adopted by most of the leading scientists, were based on melting/refreezing processes. Even though the word ‘fluid’ was first used in 1773 to describe ice, more the 130 years would have to go by before the laws of fluid mechanics were applied to ice. Even now, the parameter of Glen's law, which is used by glaciologists to model ice deformation, can take a very wide range of values, so that no unique ice flow law has yet been defined. To cite this article: F. Rémy, L. Testut, C. R. Geoscience 338 (2006).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号