首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   0篇
测绘学   3篇
大气科学   1篇
地球物理   83篇
地质学   15篇
自然地理   17篇
  2020年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   12篇
  2008年   14篇
  2007年   10篇
  2006年   9篇
  2005年   8篇
  2004年   8篇
  2003年   8篇
  2002年   4篇
  2001年   4篇
  2000年   5篇
  1999年   4篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   4篇
  1991年   2篇
  1989年   1篇
  1987年   3篇
  1985年   1篇
  1983年   1篇
排序方式: 共有119条查询结果,搜索用时 171 毫秒
1.
Preceded by four days of intense seismicity and marked ground deformation, a new eruption of Mt. Etna started on 17 July and lasted until 9 August 2001. It produced lava emission and strombolian and phreatomagmatic activity from four different main vents located on a complex fracture system extending from the southeast summit cone for about 4.5 km southwards, from 3000 to 2100 m elevation (a.s.l.). The lava emitted from the lowest vent cut up an important road on the volcano and destroyed other rural roads and a few isolated country houses. Its front descended southwards to about 4 km distance from the villages of Nicolosi and Belpasso. A plan of intervention, including diversion and retaining barriers and possibly lava flow interruption, was prepared but not activated because the flow front stopped as a consequence of a decrease in the effusion rate. Extensive interventions were carried out in order to protect some important tourist facilities of the Sapienza and Mts. Silvestri zones (1900 m elevation) from being destroyed by the lava emitted from vents located at 2700 m and 2550 m elevation. Thirteen earthen barriers (with a maximum length of 370 m, height of 10–12 m, base width of 15 m and volume of 25 000 m3) were built to divert the lava flow away from the facilities towards a path implying considerably less damage. Most of the barriers were oriented diagonally (110–135°) to the direction of the flow. They were made of loose material excavated nearby and worked very nicely, resisting the thrust of the lava without any difficulty. After the interventions carried out on Mt. Etna in 1983 and in 1991–1992, those of 2001 confirm that earthen barriers can be very effective in controlling lava flows.  相似文献   
2.
3.
4.
We examine the application of Hidden Markov Models (HMMs) to volcanic occurrences. The parameters in HMMs can be estimated from data by means of the Expectation–Maximization (EM) algorithm. Various formulations permit modelling the activity level of a volcano through onset counts, the intensity of a Markov Modulated Poisson Process (MMPP), or through the intervals between onsets. More elaborate models allow investigation of the relationship between durations and reposes. After fitting the model, the Viterbi algorithm can be used to identify the underlying (hidden) activity level of the volcano most consistent with the observations. The HMM readily provides forecasts of the next event, and is easily simulated. Data of flank eruptions 1600–2006 from Mount Etna are used to illustrate the methodology. We find that the volcano has longish periods of Poissonian behaviour, interspersed with less random periods, and that changes in regime may be more frequent than have previously been identified statistically. The flank eruptions of Mount Etna appear to have a complex time-predictable character, which is compatible with transitions between an open and closed conduit system. The relationship between reposes and durations appears to characterize the cyclic nature of the volcanoes activity.  相似文献   
5.
Analysis of sustained long-period activity at Etna Volcano, Italy   总被引:1,自引:0,他引:1  
Following the installation of a broadband network on Mt. Etna, sustained Long-Period (LP) activity was recorded accompanying a period of total quiescence and the subsequent onset of the 2004–2005 effusive episode. From about 56000 events detected by an automatic classification procedure, we analyse a subset of about 3000 signals spanning the December 17th, 2003–September 25th, 2004, time interval. LP spectra are characterised by several, unevenly-spaced narrow peaks spanning the 0.5–10 Hz frequency band. These peaks are common to all the recording sites of the network, and different from those associated with tremor signals. Throughout the analysed time interval, LP spectra and waveforms maintain significant similarity, thus indicating the involvement of a non-destructive source process that we interpret in terms of the resonance of a fluid-filled buried cavity. Polarisation analysis indicates radiation from a non-isotropic source involving large amounts of shear. Concurrently with LP signals, recordings from the summit station also depict Very-Long-Period (VLP) pulses whose rectilinear motion points to a region located beneath the summit craters at depths ranging between 800 and 1100 m beneath the surface. Based on a refined repicking of similar waveforms, we obtain robust locations for a selected subset of the most energetic LP events from probabilistic inversion of travel-times calculated for a 3D heterogenous structure. LP sources cluster in a narrow volume located beneath the summit craters, and extending to a maximum depth of ≈ 800 m beneath the surface. No causal relationships are observed between LP, VLP and tremor activities and the onset of the 2004–2005 lava effusions, thus indicating that magmatic overpressure played a limited role in triggering this eruption. These data represent the very first observation of LP and VLP activity at Etna during non-eruptive periods, and open the way to the quantitative modelling of the geometry and dynamics of the shallow plumbing system.  相似文献   
6.
The 1928 eruption of Etna, Sicily, although the largest such event this century, has not been studied in detail. In this paper the nature of the eruption, the destruction it caused – including the complete devastation of the town of Mascali (pre-eruption population 2,000) – and emergency responses of the authorities to it are reviewed in the context of fascist politics and planning priorities. It is contended that, although at one level the response to the 1928 eruption was successful, at another fascism merely continued and enhanced a reactive, propitiatory approach to hazard mitigation. We argue that this legacy was not successfully overcome until the middle of the nineteen eighties. Finally contemporary Italian moves towards a more proactive approach to disaster planning, both generally and in the context of Etna, are discussed.  相似文献   
7.
The simultaneous solution of the Planck equation (involving the widely used “dual-band” technique) using two shortwave infrared (SWIR) bands allows for an estimate of the fractional area of the hottest part of an active lava flow (f h) and the background temperature of the cooler crust (T c). The use of a high spectral and spatial resolution imaging spectrometer with a wide dynamic range of 15 bits (DAIS 7915) in the wavelength range from 0.501 to 12.67 μm resulted in the identification of crustal temperature and fractional areas for an intra-crater hot spot at Mount Etna, Italy. This study indicates the existence of a relationship between these T c and f h extracted from DAIS and Landsat TM data. When the dual band equation system is performed on a lava flow, a logarithmic distribution is obtained from a plot of the fractional area of the hottest temperature vs. the temperature of the cooler crust. An entirely different distribution is obtained over active degassing vents, where increases in T c occur without any increase in f h. This result indicates that we can use scatter plots of T c vs. fh to discriminate between different types of volcanic activity, in this case between degassing vents and lava flows, using satellite thermal data.  相似文献   
8.
During 1991–93 at Mount Etna, long-period (LP) events occurring in swarms characterized the evolution of the eruption. The presence of multiplets i.e. groups of events with similar waveform signatures, has been recognized within this activity. Traditional techniques for locating LP events do not allow obtaining reliable hypocenters, which have only succeeded in placing earthquakes in a roughly 1 km2 area slightly east of the Mt. Etna Northeast Crater. Hypocenters have been relocated in two steps: the absolute location has been improved using Thurber’s code and a complex 3D velocity model; a highly precise relative location has been applied on multiplets to define the source geometry. 3D locations and high precision analysis suggest that during the 1991–93 eruption the resonator producing LP events was a part of the uppermost Northeast Crater conduit, measuring 210 meters in height and 45–50 meters in diameter.  相似文献   
9.
 An estimated average CO2 output from Etna's summit craters in the range of 13±3 Mt/a has recently been determined from the measured SO2 output and measured CO2/SO2 molar ratios. To this amount the CO2 output emitted diffusely from the soil (≈ 1 Mt/a) and the amount of CO2 dissolved in Etna's aquifers (≈ 0.25 Mt/a) must be added. Data on the solubility of CO2 in Etnean magmas at high temperature and pressure allow the volume of magma involved in the release of such an amount of this gas to be estimated. This volume of magma (≈ 0.7 km3/a) is approximately 20 times greater than the volume of magma erupted annually during the period 1971–1995. On the basis of C-isotopic data of CO2 collected in the Etna area and of new hypotheses on the source of Mediterranean magmas, significant contributions of CO2 from non-magmatic sources to the total output from Etna are unlikely. Such large outputs of CO2 and also of SO2 from Etna could be due to an anomalously shallow asthenosphere beneath the volcano that allows a continuous escape of gases toward the surface, even without migration of magma. Received: 7 August 1996 / Accepted: 9 November 1996  相似文献   
10.
 The aim of this paper is to verify whether lichens have the capacity to accumulate atmospheric contaminators linked to volcanic activity. About 100 lichens were collected in 1994 and 1995 from two active volcanic areas in Italy: Mount Etna and Vulcano Island. Twenty-seven elements were analyzed for each individual lichen using Instrumental Neutronic Activation Analysis and Inductively Coupled Plasma-Mass Spectrometry. Lichen composition reflects the contribution of the volcanic particulate material, and the two areas investigated can be distinguished on the basis of the concentration of some lithophile elements. Moreover, the distribution in lichens of the elements (As, Sb, Br, Pb) – derived from gas emissions (plume, fumaroles) – also shows different geochemical trends on Mt. Etna and Vulcano. Received: 20 April 1998 · Accepted: 4 July 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号