首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
地球物理   6篇
地质学   1篇
综合类   1篇
自然地理   5篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1992年   1篇
  1987年   1篇
  1983年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
Three high erosivity conditions (50 mm hr?1, 100 mm hr?1, and 200 mm hr?1) were generated in a laboratory using a rainfall simulator and coherent soil block samples from fourteen different soil erodibility conditions. The data acquired supports the theoretical contention that soil loss should not increase as a simple linear function of storm intensity. Rather, a variable relationship is caused by the rupturing of surface seals and the changing relative significance of splash, wash and rainwash processes. Slope angle appears to influence soil loss at the higher erosivity conditions of 100 mm hr?1 and 200 mm hr?1 on slopes that were either very steep (> 20°) or very shallow (< 3°), but on moderate slopes the relationship is unclear. Examination of the variation of soil loss with erosivity when soil loss for a specific high erosivity condition is known revealed that conversion and power factors are of doubtful value and little generality. A satisfactory predictive equation, a power curve, is seen to be of value only when comparing rainwash soil loss between the higher erosivity conditions. The relationship is most safely considered as soil and site specific. Where the influence of slope and soil erodibility are disregarded, a strong association between soil loss and rainfall intensity is found. That soil loss, and hence, soil erodibility varies non-uniformly with erosivity is clear. The findings indicate caution is required when comparing conclusions drawn from studies based upon different erosivity conditions.  相似文献   
2.
In this paper we discuss the large-scale geomorphological characteristics of the Swiss Alps based on numerical analysis of a digital elevation model and compare these to an erodibility map constructed from a geotechnical map of Switzerland and regional geomorphological studies. Comparing the erodibility map with the large-scale morphometry shows an intimate relationship between mountain-scale erodibility and topography. On average, higher mean elevations and steeper mean slopes correlate with regions where rocks of low erodibility prevail. Areas with high peaks as well as the main water divides are controlled by the presence of bedrock with low to very low detachability. The drainage network of the Swiss Alps shows a close relationship to the lithological differences as well. Major longitudinal valleys follow easily erodible units. In the eastern and western part of the Swiss Alps, the highest values of local relief are located to the south of the main water divide, whereas in the central part, local relief is higher to the north of the main water divide. The large-scale geomorphic characteristics regarded in the framework of the geological history of uplift and denudation suggest that low and very low erodibilities lead to the development of areas of high elevations which are likely to persist over periods of 10–15 Ma. As the analysis of the Lepontine area shows, 20 Ma after cessation of exhumation, such high elevations are likely to be worn down and to manifest themselves as high relief only.  相似文献   
3.
4.
lINTRoDUCTIONDamshavebeendesignedtraditionallynottobeovertoppedduringprobablemaximumfloodevents.AccordingtoPowledgeet.aI.(l989),manytensofthousandsofdamshave,however,becomepotentiallysubjecttoovertoppingasaresuItofimprovementsinthequalityofflooddataandinthemethodsfordeterminingprobablemaximumfloodsforwhichitisnotpossiblenoreconomicallyfeasibletoconsidermodificationstopreventovertopping.SomedamshavemoreoverbeenobservedtohavewithstoodmoderateoveFtopping.Effortshaveasaresultbeenconcentrated…  相似文献   
5.
The water erosion prediction project(WEPP) model is a popular water erosion prediction tool developed on the basis of the physical processes of water erosion.Although WEPP has been widely used around the world,its application in China is still insufficient.In this study,the performance of WEPP used to estimate the runoff and soil loss on purple soil(Calcaric Regosols in FAO taxonomy) sloping cropland was assessed with the data from runoff plots under simulated rainfall conditions.Based on measured soil properties,runoff and erosion parameters,namely effective hydraulic conductivity,inter-rill erodibility,rill erodibility,and critical shear stress were determined to be 2.68 mm h-1,5.54 × 106 kg s-1 m 4,0.027 s m 1 and 3.5 Pa,respectively,by using the recommended equations in the WEPP user manual.The simulated results were not good due to the low Nash efficiency of 0.41 for runoff and negative Nash efficiency for soil loss.After the four parameters were calibrated,WEPP performed better for soil loss prediction with a Nash efficiency of 0.76.The different results indicated that the equations recommended by WEPP to calculate parameters such as erodiblity and critical shear stress are not suitable for the purple soil areas,Sichuan Province,China.Although the predicted results can be accepted by optimizing the runoff and erosion parameters,more research related to the determination of erodibility and critical sheer stress must be conducted to improve the application of WEPP in the purple soil areas.  相似文献   
6.
Post-wildfire erosion response in two geologic terrains in the western USA   总被引:1,自引:0,他引:1  
Volumes of eroded sediment after wildfires vary substantially throughout different geologic terrains across the western United States. These volumes are difficult to compare because they represent the response to rainstorms and runoff with different characteristics. However, by measuring the erosion response as the erodibility efficiency of water to detach and transport sediment on hillslopes and in channels, the erosion response from different geologic terrains can be compared. Specifically, the erodibility efficiency is the percentage of the total available stream power expended to detach, remobilize, or transport a mass of sediment. Erodibility efficiencies were calculated for the (i) initial detachment, and for the (ii) remobilization and transport of sediment on the hillslopes and in the channels after wildfire in two different geological terrains.The initial detachment efficiencies for the main channel and tributary channel in the granitic terrain were 10 ± 9% and 5 ± 4% and were similar to those for the volcanic terrain, which were 5 ± 5% and 1 ± 1%. No initial detachment efficiency could be measured for the hillslopes in the granitic terrain because hillslope measurements were started after the first major rainstorm. The initial detachment efficiency in the volcanic terrain was 1.3 ± 0.41%. The average remobilization and transport efficiencies associated with flash floods in the channels also were similar in the granitic (0.18 ± 0.57%) and volcanic (0.11 ± 0.41%) terrains. On the hillslope the remobilization and transport efficiency was greater in the volcanic terrain (2.4%) than in the granitic terrain (0.65%). However, this may reflect the reduced sediment availability after the first major rainstorm (30-min maximum rainfall intensity  90 mm h− 1) in the granitic terrain, while easily erodible fine colluvium remained on the hillslope after the first rainstorm (30-min maximum rainfall intensity = 7.2 mm h− 1) in the volcanic terrain. The erosion response in channels and on hillslopes of the granitic and volcanic terrains was similar when compared using erodibility efficiencies.  相似文献   
7.
The objective of this study was to examine the possibility of determining soil erodibility of loamy soils with small flumes. This was done by comparing the classification of soil erodibility obtained in the field with that obtained in the laboratory. Therefore twenty soils with a texture varying from silty loam to sandy loam were selected from the Leuven region. The erosion in the field was determined by measuring the volumetric evolution of the rill pattern. In the laboratory the soils were tested with a rainfall simulator and small flumes. The conclusion was that for loamy soils the flume experiments are a quick, simple, and reliable method for the determination of the relative soil erodibility.  相似文献   
8.
Widely used models of meander evolution relate migration rate to vertically averaged near-bank velocity through the use of a coefficient of bank erosion (E). In applications to floodplain management problems, E is typically determined through calibration to historical planform changes, and thus its physical meaning remains unclear. This study attempts to clarify the extent to which E depends on measurable physical characteristics of the channel boundary materials using data from the Sacramento River, California, USA. Bend-average values of E were calculated from measured long-term migration rates and computed near-bank velocities. In the field, unvegetated bank material resistance to fluvial shear (k) was measured for four cohesive and noncohesive bank types using a jet-test device. At a small set of bends for which both E and k were obtained, we discovered that variability in k explains much of the variability in E. The form of this relationship suggests that when modeling long-term meander migration of large rivers, E depends largely on bank material properties. This finding opens up the possibility that E may be estimated directly from field data, enabling prediction of meander migration rates for systems where historical data are unavailable or controlling conditions have changed. Another implication is that vegetation plays a limited role in affecting long-term meander migration rates of large rivers like the Sacramento River. These hypotheses require further testing with data sets from other large rivers.  相似文献   
9.
This study examined the variation in soil erodibility along hillslopes in a Prairie landscape. The soil loss produced by simulated rainfall on undisturbed soils was used as an index of relative soil erodibility. Relative erodibility, and several soil properties, were measured at the summit, shoulder, midslope footslope and toeslope of 11 slope transects in an area of cultivated grassland soils on hummocky glacial till. The variation of erodibility with slope position was statistically significant, and slope position explained about 40 per cent of the variation in the erodibility measurements. Erodibility was 14 per cent higher on the shoulder and midslope, and 21 per cent lower on the toeslope, than on the summit and footslope. Local variation in erodibility along slopes was considered to be an important control on patterns of soil erosion in the landscape. The variation of erodibility along the slopes reflected soil property trends. The greatest erodibility was associated with upper slope positions where soils tended to be shallow, coarse, poorly leached and low in organic matter, while lower erodibility was found at lower slope positions with deep, organic-rich and leached soils. Of the individual soil properties considered, silt and sand content were the most highly correlated with erodibility. The results, together with results from other studies, also suggest that net erosion and erodibility are positively related.  相似文献   
10.
Inappropriate anthropogenic activities such as overcultivation and overgrazing of steppe and excessive collection of fuelwood are largely responsible for current desertification in China. However, quantitative information concerning the impacts of human disturbance on soil erosion remains sparse. This study investigated aeolian sandy soil erodibility under human disturbance by wind tunnel simulation. The fixed aeolian sandy soils were taken from an artificial vegetation protective system on mobile dunes at the southeastern edge of the Tengger Desert. The results indicate that: (1) human disturbance such as cultivation can accelerate the erodibility of the fixed aeolian sandy soil. The ratio between total soil loss from the undisturbed soil and the cultivated soil is about 0.004; (2) surface vegetation and microbiotic crust are the main factors responsible for the natural wind erodibility of the fixed sandy soil. Wind erosion rate increases with decreasing percent of the vegetation and crust cover; (3) the grain size distribution shows a higher percentage of particles in the range >1.0 mm and a lower percentage in the range <0.05 mm for the cultivated sandy soil than for the undisturbed fixed sandy soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号