首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
地球物理   18篇
  2008年   15篇
  2004年   2篇
  1987年   1篇
排序方式: 共有18条查询结果,搜索用时 46 毫秒
1.
Six new 40Ar/39Ar and three cosmogenic 36Cl age determinations provide new insight into the late Quaternary eruptive history of Erebus volcano. Anorthoclase from 3 lava flows on the caldera rim have 40Ar/39Ar ages of 23 ± 12, 81 ± 3 and 172 ± 10 ka (all uncertainties 2σ). The ages confirm the presence of a second, younger, superimposed caldera near the southwestern margin of the summit plateau and show that eruptive activity has occurred in the summit region for 77 ± 13 ka longer than previously thought. Trachyte from “Ice Station” on the eastern flank is 159 ± 2 ka, similar in age to those at Bomb Peak and Aurora Cliffs. The widespread occurrences of trachyte on the eastern flank of Erebus suggest a major previously unrecognized episode of trachytic volcanism. The trachyte lavas are chemically and isotopically distinct from alkaline lavas erupted contemporaneously in the summit region < 5 km away.  相似文献   
2.
Volcanic emission rates of As, Sb, Pb, Hg, Se, Cl, and F were determined at Erebus volcano, Antarctica and White Island, New Zealand, using chemical traps. The trace metal fluxes were determined by combining the species to S ratios in the solutions with SO2 emission rates measured by correlation spectrometry at the two volcanoes. At Erebus volcano, fluxes for the metals Pb and Hg were 2.0 × 10− 4 and 8.1 × 10− 6 kg s− 11, respectively. Fluxes for Cl, F, As, Sb and Se (0.35, 0.15, 2.5 × 10− 4, 1.2 × 10− 5, and 4.5 × 10− 6 kg s− 1, respectively) agreed within error limits for values determined previously by the LiOH impregnated filter method [Zreda-Gostynska, G., Kyle, P., Finnegan, D., Prestbo, K., 1997. Volcanic gas emissions from Mount Erebus and their impact on the Antarctic environment. Journal of Geophysical Research, 102(B7): 15039–15055.], demonstrating the utility of the chemical trap method. A fall in the As/S ratio from 7 × 10− 4 in 1997/1999 to 3 × 10− 4 in 2000 at Erebus coincided with a change in the frequency and style of eruptive activity that may have been due to injection of magma into the system. At White Island, chemical trap data indicated fluxes of Cl = 0.90, F = 0.0079, Pb = 2.7 × 10− 4, Hg = 1.1 × 10− 5, As = 1.3 × 10− 4, Sb = 1.9 × 10− 5 and Se = 1.5 × 10− 5 kg s− 1. Samples collected 600 m downwind of the active crater were comparable to samples collected adjacent to the main gas vent, showing that this method can still be used at some distance from a degassing vent.  相似文献   
3.
Mt. Erebus, a 3,794-meter-high active polygenetic stratovolcano, is composed of voluminous anorthoclase-phyric tephriphonolite and phonolite lavas overlying unknown volumes of poorly exposed, less differentiated lavas. The older basanite to phonotephrite lavas crop out on Fang Ridge, an eroded remnant of a proto-Erebus volcano and at other isolated locations on the flanks of the Mt. Erebus edifice. Anorthoclase feldspars in the phonolitic lavas are large (~10 cm), abundant (~30–40%) and contain numerous melt inclusions. Although excess argon is known to exist within the melt inclusions, rigorous sample preparation was used to remove the majority of the contaminant. Twenty-five sample sites were dated by the 40Ar/39Ar method (using 20 anorthoclase, 5 plagioclase and 9 groundmass concentrates) to examine the eruptive history of the volcano. Cape Barne, the oldest site, is 1,311±16 ka and represents the first of three stages of eruptive activity on the Mt. Erebus edifice. It shows a transition from sub-aqueous to sub-aerial volcanism that may mark the initiation of proto-Erebus eruptive activity. It is inferred that a further ~300 ky of basanitic/phonotephritic volcanism built a low, broad platform shield volcano. Cessation of the shield-building phase is marked by eruptions at Fang Ridge at ~1,000 ka. The termination of proto-Erebus eruptive activity is marked by the stratigraphically highest flow at Fang Ridge (758±20 ka). Younger lavas (~550–250 ka) on a modern-Erebus edifice are characterized by phonotephrites, tephriphonolites and trachytes. Plagioclase-phyric phonotephrite from coastal and flank flows yield ages between 531±38 and 368±18 ka. The initiation of anorthoclase tephriphonolite occurred in the southwest sector of the volcano at and around Turks Head (243±10 ka). A short pulse of effusive activity marked by crustal contamination occurred ~160 ka as indicated by at least two trachytic flows (157±6 and 166±10 ka). Most anorthoclase-phyric lavas, characteristic of Mt. Erebus, are less than 250 ka. All Mt. Erebus flows between about 250 and 90 ka are anorthoclase tephriphonolite in composition.Editorial responsibility: J. Donelly-Nolan  相似文献   
4.
The summit cone of the Erebus volcano contains two craters. The Main crater is roughly circular (∼ 500 m diameter) and contains an active persistent phonolite lava lake ∼ 200 m below the summit rim. The Side Crater is adjacent to the southwestern rim of the Main Crater. It is a smaller spoon-shaped Crater (250–350 m diameter, 50–100 m deep) and is inactive. The floor of the Side Crater is covered by snow/ice, volcanic colluvium or weakly developed volcanic soil in geothermal areas (a.k.a. warm ground). But in several places the walls of the Side Crater provide extensive vertical exposure of rock which offers an insight into the recent eruptive history of Erebus. The deposits consist of lava flows with subordinate volcanoclastic lithologies. Four lithostratigraphic units are described: SC 1 is a compound lava with complex internal flow fabrics; SC 2 consists of interbedded vitric lavas, autoclastic and pyroclastic breccias; SC 3 is a thick sequence of thin lavas with minor autoclastic breccias; SC 4 is a pyroclastic fall deposit containing large scoriaceous lava bombs in a matrix composed primarily of juvenile lapilli-sized pyroclasts. Ash-sized pyroclasts from SC 4 consist of two morphologic types, spongy and blocky, indicating a mixed strombolian-phreatomagmatic origin. All of the deposits are phonolitic and contain anorthoclase feldspar.  相似文献   
5.
Gas emissions from Erebus volcano, Antarctica, were measured by open-path Fourier transform infrared spectroscopy to understand degassing of its magmatic system. Two degassing phonolite lava lakes were present in the summit crater during observation in December 2004. We report analyses of H2O, CO2, CO, SO2, HF, HCl and OCS, (in order of molar abundance) in the plumes. Variations in the proportions of these species strongly reflect the dynamics of degassing, and sourcing of gas from different depths in the magmatic network. The highest observed ratios of CO2 and H2O are consistent with gas extracted from the melt at a depth of up to ∼ 2 km below the lava lakes. Magma degassing above this depth contributes to a higher H2O/CO2 proportion in the airborne plume. The ratio therefore reflects the balance of deeper vs. shallower contributions of volatiles and, possibly, a combination of closed- and open-system degassing. We observe a strong contrast in HF content in emissions from the two lava lakes, which we attribute to differing levels of magma ascent and/or cooling and crystallization of the magma supply. Fluxes of all gas species were determined using independent SO2 flux determinations and measured gas ratios. In the case of CO2 and water, ∼ 1 and ∼ 0.4 m3 s− 1, respectively, of parental basanite magma are required to sustain the calculated output. The discrepancy between the two figures is readily explained by sequestration of part of the magma supply at depth such that it only partially degasses its complement of water.  相似文献   
6.
7.
The stable, persistent, active lava lake at Erebus volcano (Ross Island, Antarctica) provides an excellent thermal target for analysis of spacecraft observations, and for testing new technology. In the austral summer of 2005 visible and infrared observations of the Erebus lava lake were obtained with sensors on three space vehicles Terra (ASTER, MODIS), Aqua (MODIS) and EO-1 (Hyperion, ALI). Contemporaneous ground-based observations were obtained with hand-held infrared cameras. This allowed a quantitative comparison of the thermal data obtained from different instruments, and of the analytical techniques used to analyze the data, both with and without the constraints imposed by ground-truth. From the thermal camera data, in December 2005 the main Erebus lava lake (Ray Lake) had an area of ≈ 820 m2. Surface colour temperatures ranged from 575 K to 1090 K, with a broad peak in the distribution from 730 K to 850 K. Total heat loss was estimated at 23.5 MW. The flux density was ≈ 29 kW m− 2. Mass flux was estimated at 64 to 93 kg s− 1. The best correlation between thermal emission and emitting area was obtained with ASTER, which has the best combination of spatial resolution and wavelength coverage, especially in the thermal infrared. The high surface temperature of the lava lake means that Hyperion data are for the most part saturated. Uncertainties, introduced by the need to remove incident sunlight cause the thermal emission from the Hyperion data to be a factor of about two greater than that measured by hand-held thermal camera. MODIS also over-estimated thermal output from the lava lake by the same factor of two because it was detecting reflected sunlight from the rest of the pixel area. The measurement of the detailed temperature distribution on the surface of an active terrestrial lava lake will allow testing of thermal emission models used to interpret remote-sensing data of volcanism on Io, where no such ground-truth exists. Although the Erebus lava lake is four orders of magnitude smaller than the lava lake at Pele on Io, the shape of the integrated thermal emission spectra are similar. Thermal emission from this style of effusive volcanism appears to be invariant. Excess thermal emission in most Pele spectra (compared to Erebus) at short wavelengths (< 3 μm) is most likely due to disruption of the surface on the lava lake by escaping volatiles.  相似文献   
8.
Mount Erebus, Antarctica, is a large (3794 m) alkaline open-conduit stratovolcano that hosts a vigorously convecting and persistently degassing lake of anorthoclase phonolite magma. The composition of the lake was investigated by analyzing glass and mineral compositions in lava bombs erupted between 1972 and 2004. Matrix glass, titanomagnetite, olivine, clinopyroxene, and fluor-apatite compositions are invariant and show that the magmatic temperature (∼ 1000°C) and oxygen fugacity (ΔlogFMQ = − 0.9) have been stable. Large temperature variations at the lake surface (~ 400–500°C) are not reflected in mineral compositions. Anorthoclase phenocrysts up to 10 cm in length feature a restricted compositional range (An10.3–22.9Ab62.8–68.1Or11.4–27.2) with complex textural and compositional zoning. Anorthoclase textures and compositions indicate crystallization occurs at low degrees of effective undercooling. We propose shallow water exsolution causes crystallization and shallow convection cycles the anorthoclase crystals through many episodes of growth resulting in their exceptional size. Minor variations in eruptive activity from 1972 to 2004 are decoupled from magma compositions. The variations probably relate to changes in conduit geometry within the volcano and/or variable input of CO2-rich volatiles into the upper-level magma chamber from deeper in the system.  相似文献   
9.
Emission rates of sulfur dioxide (SO2) were measured at Erebus volcano, Antarctica in December between 1992 and 2005. Since 1992 SO2 emissions rates are normally distributed with a mean of 61 ± 27 Mg d− 1 (0.7 ± 0.3 kg s− 1) (n = 8064). The emission rates vary over minutes, hours, days and years. Hourly and daily variations often show systematic and cyclic trends. Long-wavelength, large amplitude trends appear related to lava lake area and both are likely controlled by processes occurring at depth. Time series analysis of continuous sequences of measurements obtained over periods of several hours reveals periodicity in SO2 output ranging from 10 to 360 min, with a 10 min cycle being the most dominant. Closed and open-system degassing models are considered to explain observed variable degassing rates. Closed-system degassing is possible as rheological stiffening and stick/slip may occur within the system. However, the timescales represented in these models do not fit observations made on Erebus. Open-system degassing and convection fits the observations collected as the presented models were developed for a system similar to Erebus in terms of degassing, eruptive activity and process repose time. We show that with the observed emission rate (0.71 kg s− 1) and a crystal content of 30%, magma will cool 65 °C to match observed heat fluxes; this cooling is sufficient enough to drive convection.  相似文献   
10.
A tephrostratigraphy for Erebus volcano is presented, including tephra composition, stratigraphy, and eruption mechanism. Tephra from Erebus were collected from glacial ice and firn. Scanning electron microscope images of the ash morphologies help determine their eruption mechanisms The tephra resulted mainly from phreatomagmatic eruptions with fewer from Strombolian eruptions. Tephra having mixed phreatomagmatic–Strombolian origins are common. Two tephra deposited on the East Antarctic ice sheet, ~ 200 km from Erebus, resulted from Plinian and phreatomagmatic eruptions. Glass droplets in some tephra indicate that these shards were produced in both phreatomagmatic and Strombolian eruptions. A budding ash morphology results from small spheres quenched during the process of hydrodynamically splitting off from a parent melt globule. Clustered and rare single xenocrystic analcime crystals, undifferentiated zeolites, and clay are likely accidental clasts entrained from a hydrothermal system present prior to eruption. The phonolite compositions of glass shards confirm Erebus volcano as the eruptive source. The glasses show subtle trends in composition, which correlate with stratigraphic position. Trace element analyses of bulk tephra samples show slight differences that reflect varying feldspar contents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号