首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球物理   4篇
地质学   1篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2006年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
We suggest a practical method for estimating strain–modulus–damping relationships for utilization in equivalent-linear site response analyses, so that the necessity for more sophisticated sampling and testing procedures can be justified. The method employs the commercial cyclic testing apparatuses, which have limitations in low-strain ranges, and the in-situ seismic tests. The shear modulus at about 1% cyclic shear strain amplitude and the shear-wave velocity measured in-situ is used for building a hyperbolic relationship between shear stress and shear strain. An extension of Masing׳s rule and the constraint on hysteretic damping at 1% cyclic shear strain amplitude leads to a strain–damping relationship. By putting a particular emphasis on the soils of Adapazarı, a city famous for the concentrated damage on alluvium basin during the 1999 Kocaeli (Mw7.4) earthquake, we demonstrated the usefulness of the method, and concluded that the shear-modulus reduction and damping characteristics of Adapazarı soils can yield to site amplification factors greater than those predicted by strain–modulus–damping relationships presented in literature, and can more efficiently explain the concentration of damage on the alluvium basin. Through the comparisons of spectral amplification factors computed by equivalent-linear site response analyses, we justified the necessity to run a more sophisticated testing program on determination of cyclic stress–strain behavior of Adapazarı soils, and consequently to consider transient nonlinear site-response analyses in order to reduce the possible bias in calculation of spectral amplification factors.  相似文献   
2.
In this paper the seismic response of simple slope geometries under vertically propagating in-plane shear waves (SV waves) is assessed through two-dimensional finite element analyses to investigate the amplification of the ground motion induced by soil topography. Topographic horizontal and vertical amplification factors were evaluated through different sets of analyses focused on slopes in homogeneous half space and on slopes overlying either a rigid or a compliant bedrock. Soil was assumed to behave as a linear visco-elastic or as an equivalent-linear visco-elastic material. In the analyses the effects of slope inclination and of the characteristics of the input motion were also investigated.In order to calibrate the numerical model, the results obtained in linear visco-elastic analyses were compared with the results of parametric numerical analyses available in the literature, showing a good agreement. The results confirmed that a complex interaction exists between stratigraphic and topographic effects on the amplification of the ground motion and that the two effects cannot be evaluated independently and easily uncoupled. In the case of compliant bedrock the effect of the impedance ratio was also investigated.The results of the equivalent-linear analyses pointed out the remarkable dependence on soil non-linear behavior and, when compared to the results of linear visco-elastic analyses, showed that without accounting for soil non-linear behavior, topographic amplification factors may result underestimated.  相似文献   
3.
Site response analysis is crucial to define the seismic hazard and distribution of damage during earthquakes. The equivalent-linear (EQL) is a numerical method widely investigated and used for site response analysis. Because several sources of uncertainty are involved in this type of analysis, parameters defining the numerical models need to be identified from in-situ measurements. In this paper, a Bayesian inference method to estimate the expected values and covariance matrix of the model parameters is presented. The methodology uses data from downhole arrays recorded during earthquakes. Two numerical applications show the good performance and prediction capabilities of the proposed approach.  相似文献   
4.
Both linear and nonlinear behaviors of soil deposits were evaluated by strong and weak motion data observed on the surface and at depths of 6, 11, 17, 47 m at the Large Scale Seismic Test (LSST) array in Lotung, Taiwan. The soil properties measured by well logging and by the shear wave velocity profile measured by uphole and cross-hole methods are available. Both one-dimensional equivalent-linear method and nonlinear method are used for the evaluation have been used. The synthetic records at various depths are obtained by using the records at the bottom as input motion. These synthetic records are then compared with actual records at corresponding depths. Records of 13 earthquakes are used. We find that the synthetic records obtained from a linear model match well with actual records for small input motions, but the results obtained from a nonlinear model match poorly. On the other hand, the synthetic records using both the nonlinear model and equivalent-linear model are in good agreement with the observed records for large input motions. In these cases, the predicted response spectra using the linear model consistently overestimate the observed records. The threshold distinguishing the large and small input motions is 0.04 g at depth of 47 m for the LSST data. Thus, the nonlinearity started at 0.04 g and occurred unequivocally at 0.075 g. Furthermore, the dominant frequencies shift toward lower values when input motions become large. Clearly, the observed records at the LSST site manifest nonlinearity of soil response. The hysteresis loops evaluated by the nonlinear method show a permanent strain of about 0.01% in soil layers at higher ground motion input levels in this case.  相似文献   
5.
Local site conditions can significantly influence the characteristics of seismic ground motions. In this study, site response analyses using one-dimensional linear elastic (LE), equivalent-linear (EQL) and nonlinear (NL) approaches are performed at different seismic hazard levels of Singapore. Two seismic stations, namely, the KAP and BES stations located at soft soil sites, are selected from the national network of Singapore. Firstly, site response estimates using the LE, EQL (SHAKE04) and NL (DEEPSOIL) approaches are compared with the borehole recordings. Results show favorable matches between the predictions and the observations at the KAP site, while under-predictions are observed for all the three site effect approaches at the BES site. Secondly, the applicability of the LE, EQL and NL models is examined at different hazard levels of Singapore. It is found that for the hazard level at a return period of 475 years, the computed maximum strain (γmax) is 0.06% and then the EQL model can provide accurate site response predictions. However, for the hazard level at a return period of 2475 years, the calculated γmax is larger than 2%, resulting in notable differences in the predictions of different site response models. This study highlights the importance of site effects in seismic hazard analysis of Singapore.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号