首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
地球物理   1篇
  2023年   1篇
排序方式: 共有1条查询结果,搜索用时 46 毫秒
1
1.
Multiples have longer propagation paths and smaller reflection angles than primaries for the same source–receiver combination, so they cover a larger illumination area. Therefore, multiples can be used to image shadow zones of primaries. Least-squares reverse-time migration of multiples can produce high-quality images with fewer artefacts, high resolution and balanced amplitudes. However, viscoelasticity exists widely in the earth, especially in the deep-sea environment, and the influence of Q attenuation on multiples is much more serious than primaries due to multiples have longer paths. To compensate for Q attenuation of multiples, Q-compensated least-squares reverse-time migration of different-order multiples is proposed by deriving viscoacoustic Born modelling operators, adjoint operators and demigration operators for different-order multiples. Based on inversion theory, this method compensates for Q attenuation along all the propagation paths of multiples. Examples of a simple four-layer model, a modified attenuating Sigsbee2B model and a field data set suggest that the proposed method can produce better imaging results than Q-compensated least-squares reverse-time migration of primaries and regular least-squares reverse-time migration of multiples.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号