首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
地球物理   1篇
  2000年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
Methane is produced under anaerobic conditions by metabolic processes in microbes and can occur in waters of the types anoxic‐anaerobic (RG 1/2) and anaerobic‐reduced (RG 2). If the concentration of methane lies below 0.2 mg/L, then no special treatment processes are required apart from dosing of oxygen and rapid sand filtration, which are performed to remove iron, manganese, and ammonium. The research results show that a higher concentration of methane must be specially treated. From the point of view of stable deferrisation, oxidation of up to 2 mg/L is tolerable in rapid sand filtration. However, an unusual increase in regrowth potential was observed. For this reason, the oxidation of methane should be reduced to 0.5 mg/L until further experiments yield results on the microbiological stability of treated water. Rapid sand filters for nitrification and demanganisation should have a maximum methane loading of 0.2 mg/L. The experiments show that nitrification first occurs at a methane concentration below 0.1 mg/L. During the working in of demanganisation, the inlet water should be free of methane. Therefore desorption is often required. If there is less than 1 mg/L to be degassed, then desorption can be achieved with overpressure in the oxidiser without any change in the carbonate‐bicarbonate equilibrium. With other systems, such as packed columns, wetted‐wall columns, or percolators, carbon dioxide is removed simultaneously. By means of the coefficients of similarity found, it was shown that methane and carbon dioxide desorb in different proportions depending on the system, and that the discharge of carbon dioxide can be reduced through a decrease in the air/water ratio.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号