首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   2篇
天文学   1篇
  2016年   1篇
  2013年   1篇
  2007年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
We study the emergence of braided magnetic fields from the top of the solar interior through to the corona. It is widely believed that emerging regions smaller than active regions are formed in the upper convection zone near the photosphere. Here, bundles of braided, rather than twisted, magnetic field can be formed, which then rise upward to emerge into the atmosphere. To test this theory, we investigate the behaviour of braided magnetic fields as they emerge into the solar atmosphere. We compare and contrast our models to previous studies of twisted flux tube emergence and discuss results that can be tested observationally. Although this is just an initial study, our results suggest that the underlying magnetic field structure of small emerging regions need not be twisted and that braided field, formed in the convection zone, could suffice.  相似文献   
2.
We address the occurrence of narrow planetary rings and some of their structural properties, in particular when the rings are shepherded. We consider the problem as Hamiltonian scattering of a large number of non-interacting massless point particles in an effective potential. Using the existence of stable motion in scattering regions in this set up, we describe a mechanism in phase space for the occurrence of narrow rings and some consequences in their structure. We illustrate our approach with three examples. We find eccentric narrow rings displaying sharp edges, variable width and the appearance of distinct ring components (strands) which are spatially organized and entangled (braids). We discuss the relevance of our approach for narrow planetary rings.  相似文献   
3.
In this article we present a review of some of the author's most recent results in topological magnetohydrodynamics (MHD), with an eye to possible applications to astrophysical flows and solar coronal structures. First, we briefly review basic work on magnetic helicity and linking numbers, and fundamental relations with magnetic energy and average crossing numbers of magnetic systems in ideal conditions. In the case of magnetic knots, we focus on the relation between their groundstate energy and topology, discussing the energy spectrum of tight knots in terms of ropelength. We compare this spectrum with the one given by considering the bending energy of such idealized knots, showing that curvature information provides a rather good indicator of magnetic energy contents. For loose knots far from equilibrium we show that inflexional states determine the transition to braid form. New lower bounds for tight knots and braids are then established. We conclude with results on energy-complexity relations for systems in presence of dissipation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号