首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
地球物理   1篇
  2013年   1篇
排序方式: 共有1条查询结果,搜索用时 250 毫秒
1
1.
This study presents a multiphase flow and multispecies reactive transport model for the simultaneous simulation of NAPL and groundwater flow, dissolution, and reactive transport with isotope fractionation, which can be used for better interpretation of NAPL-involved Compound Specific Isotope Analysis in 3D heterogeneous hydrogeologic systems. The model was verified for NAPL-aqueous phase equilibrium partitioning, aqueous phase multi-chain and multi-component reactive transport, and aqueous phase multi-component transport with isotope fractionation. Several illustrative examples are presented to investigate the effect of DNAPL spill rates, degradation rate constants, and enrichment factors on the temporal and spatial distribution of the isotope signatures of chlorinated aliphatic hydrocarbon groundwater plumes. The results clearly indicate that isotope signatures can be significantly different when considering multiphase flow within the source zone. A series of simulations indicate that degradation and isotope enrichment compete with dissolution to determine the isotope signatures in the source zone: isotope ratios remain the same as those of the source if dissolution dominates the reaction, while heavy isotopes are enriched in reactants along groundwater plume flow paths when degradation becomes dominant. It is also shown that NAPL composition can change from that of the injected source due to the partitioning of components between the aqueous and NAPL phases even when degradation is not allowed in NAPL phase. The three-dimensional simulation is presented to mechanistically illustrate the complexities in determining and interpreting the isotopic signatures with evolving DNAPL source architecture.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号