首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地球物理   8篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   4篇
  1996年   1篇
排序方式: 共有8条查询结果,搜索用时 18 毫秒
1
1.
The equations for an electrically conducting fluid in cylindrical coordinates are linearized assuming that the inertial terms in the momentum equation can be ignored (small Rossby number), and that the ratio of the Elsasser number and magnetic Reynolds number is one. After these assumptions, the governing equations are linearized about an ambient solution which vanishes at the the equator. Upon assuming large Elsasser and magnetic Reynolds number, the solutions to the linearized equations are approximated by wave trains having very short wave length (relative to the core radius) but which vary slowly (on a scale of the core radius). The period of the waves is much longer than a day but much shorter than the period of the slow hydromagnetic oscillations. These waves are found to be trapped in a region about the equator and away from the axis of rotation. The waves break at a latitudinal wave region boundary, in the sense that the waves become exponentially large in a boundary layer, having as an exponent some positive power of the large azimuthal wave number. This behavior is amplified as the Elsasser number becomes smaller while still remaining relatively large. Waves in more Earth-like parameter regimes are discussed briefly.  相似文献   
2.
We consider an electrically conducting fluid confined to a thin rotating spherical shell in which the Elsasser and magnetic Reynolds numbers are assumed to be large while the Rossby number is assumed to vanish in an appropriate limit. This may be taken as a simple model for a possible stable layer at the top of the Earth's outer core. It may also be a model for the thin shells which are thought to be a source of the magnetic fields of some planets such as Mercury or Uranus. Linear hydromagnetic waves are studied using a multiple scale asymptotic scheme in which boundary layers and the associated boundary conditions determine the structure of the waves. These waves are assumed to be of the form of an asymptotic series expanded about an ambient magnetic field which vanishes on the equatorial plane and velocity and pressure fields which do not. They take the form of short wave, slowly varying wave trains. The results are compared to the author's previous work on such waves in cylindrical geometry in which the boundary conditions play no role. The approximation obtained is significantly different from that obtained in the previous work in that an essential singularity appears at the equator and nonequatorial wave regions appear.  相似文献   
3.
Abstract

Numerical work indicates that resistive instability may be the dominant mode of instability in the Earth's outer core for realistic core parameter regimes. In this paper, we assume that the Elsasser number is large in order to obtain an asymptotic analysis of resistive instability in an electrically conducting fluid confined to a rotating cylindrical shell of infinite extent in the axial direction. The dimensionless equations of motion are linearized about an ambient magnetic field which is purely azimuthal and depends only on the cylindrical radial variable. Applying the theory of ordinary differential equations with a large parameter, we obtain an asymptotic approximation to the solution. Relatively simple analytic expressions for the complex frequencies are obtained by applying the boundary conditions for insulating boundaries at the cylindrical sidewalls and then assuming that the ambient magnetic field vanishes at one or both of those sidewalls. The results appear to be consistent with previous numerical work.  相似文献   
4.
Time-domain theory of edge and edge-and-vertex diffraction is briefly reviewed and its applications to diffraction by polygons, pyramids and curved reflectors are discussed. The time-domain theory is based on canonical functions defined in terms of inverse trigonometric and algebraic functions, which ensures its numerical efficiency.  相似文献   
5.
6.
7.
We consider an electrically conducting fluid in rotating cylindrical coordinates in which the Elsasser and magnetic Reynolds numbers are assumed to be large while the Rossby number is assumed to vanish in an appropriate limit. This may be taken as a simple model for the Earth's outer core. Fully nonlinear waves dominated by the nonlinear Lorentz forces are studied using the method of geometric optics (essentially WKB). These waves are assumed to be of the form of an asymptotic series expanded about ambient magnetic and velocity fields which vanish on the equatorial plane. They take the form of short wave, slowly varying wave trains. The first-order approximation is sinusoidal and basically the same as in the linear problem, with a dispersion relation modified by the appearance of mean terms. These mean terms, as well the undetermined amplitude functions, are found by suppressing secular terms in a “fast” variable in the second-order approximation. The interaction of the mean terms with the dispersion relation is the primary cause of behaviors which differ from the linear case. In particular, new singularities appear in the wave amplitude functions and an initial value problem results in a singularity in one of the mean terms which propagates through the fluid. The singularities corresponding to the linear ones are shown to develop when the corresponding waves propagate toward the equatorial plane.  相似文献   
8.
We consider an electrically conducting rotating fluid governed by the shallow water magnetohydrodynamic equations with no diffusion. We use an a priori asymptotic technique (the method of geometric optics or ray method) to study weakly nonlinear hydromagnetic waves. These waves are intermediate in length in the following sense: they are much longer than the fluid depth but much shorter than the radius of the earth. The time scale for the waves is much longer than that of the free surface oscillations and the approximation varies on an even longer timescale. The waves we are considering are studied in the beta plane approximation for an ambient magnetic field parallel to the equator which varies in the direction perpendicular to the equator. The leading order approximation gives a dispersion relation for the waves, which are generally found to be confined to bands about the equator as well as in bands at higher and lower latitudes. At the next order of approximation, a conservation law is found for the wave amplitude. We also obtain an equation governing the behavior of the leading order mean azimuthal velocity which is forced to grow linearly with time.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号