首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   3篇
  国内免费   4篇
地球物理   6篇
地质学   29篇
  2021年   1篇
  2020年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2004年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1991年   2篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
Twenty-six groundwater samples were collected from the Eastern Thessaly region and analysed by ICP-ES for these elements: Al, As, P, Pb, Zn, Mn, Fe, Cr, Sb, Cu, Na, Br, Cl, Si, Mg, Ag, Be, Bi, Dy, Er, Eu, Au, Ge, Ho, In, Ir, Os, Pt, Re, Rh, Ru, Lu, Hf, Hg, Tm, Zr and Nb. The objectives of the study were to assess the level of water contamination with respect to the EC and the USEPA health-based drinking water criteria. The geology of the studied area includes schists, amphibolites, marbles of Palaeozoic age, ophiolites, limestones of Triassic and Cretaceous age, Neogene and Quaternary deposits. The element ranges for groundwater samples are: Al 7–56 μg l−1, As 1–125 μg l−1, Br 6–60 μg l−1, Cl 500–25,000 μg l−1, Cr 1–6 μg l−1, Cu 1–15 μg l−1, Fe 10–352 μg l−1, Mg 2,940–40,100 μg l−1, Mn 0–8 μg l−1, Na 3,650–13,740 μg l−1, P 20–48 μg l−1, Pb 0–7 μg l−1, Sb 0–21 μg l−1, Si 3,310–13,240 μg l−1 and Zn 7–994 μg l−1. The results of groundwater analyses from the region of Eastern Thessaly showed elevated concentrations of As and Sb. Factor analysis explained 77.8% of the total variance of the data through five factors. Concentration of Br, Cl, Mg, Na and Si is directly related to the presence of saltwater in the aquifer, so grouping of these variables in factor 1 probably reflects the seawater intrusion. Al, As and Sb are known to form complexes in the environment, so grouping of these elements in factor 2 indicates their similar geochemical behaviour in the environment. The high negative loading of Mn in factor 2 indicates the presence of manganese oxides–hydroxides in the study area. Pb and Zn are associated together in sulphide mineralisation; so grouping of these elements in factor 3 reflects the sulphide mineralization paragenesis in the Melivoia area. P and Cu are associated together in phosphate fertilizers; so grouping of these variables in factor 4 could be related to agricultural practices. Cr, Fe, Mn and Mg are associated together in iron and manganese oxides–hydroxides and the weathering products of the olivine of the ultrabasic rocks; so grouping of these elements in factor 5 reflects the lithology of the area. There is a natural contamination of groundwaters with elevated concentrations of As and Sb due to the presence of the arsenopyrite and stibnite mineralisation in the Melivoia, Sotiritsa and Ano Polydendri areas. Contamination over the health-based drinking water guidelines given by EC and EPA has been investigated from nine sampling sites out of 26 of Eastern Thessaly region.  相似文献   
2.
Although antimony (Sb) and arsenic (As) exhibit similar geochemical behavior and toxicity in the environment, growing evidence suggests that their water–rock interaction behavior in contaminated rivers is quite different. Twenty-nine river water samples were collected between September and November 2018 from contaminated rivers around an antimony mine in Hunan Province, China. The concentrations of As and Sb were inversely proportional to the water flow distance. The rates and magnitudes of Sb decrease were more prominent than those of As. Silicate mineral dissolution from rocks such as silicified limestone increased the As and Sb concentration of in-mine-district (IMD) water. Dissolution of carbonate minerals, ion exchange, and competitive adsorption were the major water–rock interactions, resulting in rapidly decreasing As and Sb concentration in IMD direct impacted water and IMD indirect impacted water. The behaviors of As and Sb during water–rock interaction were dissimilar for areas dominated by carbonate and silicate minerals.  相似文献   
3.
桃江县板溪锑矿床地质特征及成矿构造分析   总被引:1,自引:0,他引:1  
胡楚南 《湖南地质》1991,10(4):317-320
桃江县板溪锑矿,主要开采2号矿脉,它赋存在上元古界板溪群五强溪组上段,由中矿脉、东支脉和西盲脉组成,矿石矿物主要是辉锑矿,平均厚度0.40 m,平均品位Sb 25.48%,属燕山期中低温热液型锑矿床。矿区成矿构造V_2和V_(2-1)断裂,成矿前显张扭性,成矿期转化为压扭性质,西盲脉,则充填V_(2-2)断裂派生的“多”字型构造。它们为矿区富厚矿体提供了主要成矿空间,展示了构造与矿床的密切成生联系。  相似文献   
4.
独山锑矿稳定同位素地球化学研究   总被引:10,自引:0,他引:10  
通过氧、硫、氢、碳、铅等稳定同位素和矿物包裹体地球化学的研究;指出独山锑矿成矿温度低(1OO~200℃).成矿流体主要为大气降水,成矿物质主要来自地层;成矿作用以构造裂隙充填型为主;系大气降水低温热液型矿床.该类矿化是地洼区构造活化成矿的一种典型成因类型.  相似文献   
5.
桂西北地区是广西锑矿密集区,文章对区内锑矿床的地质特征、地球化学特征、矿体富集规律和找矿标志进行了分析和探讨。  相似文献   
6.
7.
The removal of heavy metals such as Ni(II), Zn(II), Al(III), and Sb(III) from aqueous metal solutions was investigated using novel, cost effective, seaweed derived sorbents. Studies with a laboratory scale fixed‐bed sorption column, using a seaweed waste material (referred to as waste Ascophyllum product (WAP)) from the processing of Ascophyllum nodosum as biosorbent, demonstrated high removal efficiencies (RE) for a variety of heavy metals including Ni(II), Zn(II) and Al(III), with 90, 90 and 74% RE achieved from initial 10 mg/L metal solutions, respectively. The presence of Sb(III) in multi component metal solutions suppressed the removal of Ni(II), Zn(II) and Al(III), reducing the RE to 28, 17 and 24%, respectively. The use of Polysiphonia lanosa as a biosorbent showed a 67% RE for Sb(III), both alone and in combination with other metals. Potentiometric and conductometric titrations, X‐ray photoelectron and mid‐infrared spectroscopic analysis demonstrated that carboxyl, alcohol, sulfonate and ether groups were heavily involved in Sb(III) binding by P. lanosa. Only carboxyl and sulfonate groups were involved in Sb(III) binding by WAP. Furthermore, a greater amount of weak acidic groups (mainly carboxylic functions) were involved in Sb(III) binding by P. lanosa, compared to WAP which involved a greater concentration of strong acidic groups (mainly sulfonates).  相似文献   
8.
Antimony (Sb) is strongly concentrated into hydrothermal mineral deposits, commonly with gold, in metasedimentary sequences around the Pacific Rim. These deposits represent potential point sources for Sb in the downstream environment, particularly when mines are developed. This study documents the magnitude and scale of Sb mobility near some mineral deposits in Australia and New Zealand. Two examples of New Zealand historic mining areas demonstrate that natural groundwater dissolution of Sb from mineral deposits dominates the Sb load in drainage waters, with Sb concentrations between 3 and 24 μg/L in major streams. Mine-related discharges can exceed 200 μg/L Sb, but volumes are small. Sb flux in principal stream waters is ca 1–14 mg/s, compared to mine tunnel fluxes of ca 0.001 mg/s. Dissolved Sb is strongly attenuated near some mine tunnels by adsorption on to iron oxyhydroxide precipitates. Similar Sb mobilisation and attenuation processes are occurring downstream of the historic/active Hillgrove antimony–gold mine of New South Wales, Australia, but historic discharges of Sb-bearing debris has resulted in elevated Sb levels in stream sediments (ca 10–100+ mg/kg) and riparian plants (up to 100 mg/kg) for ca 300 km downstream. Dissolution of Sb from these sediments ensures that river waters have elevated Sb (ca 10–1,000 μg/L) over that distance. Total Sb flux reaching the Pacific Ocean from the Hillgrove area is ca 8 tonnes/year, of which 7 tonnes/year is particulate and 1 tonne/year is dissolved.  相似文献   
9.
湘中地区硅化岩研究   总被引:2,自引:0,他引:2  
湘中地区硅化岩,产出层位多,原岩组成多样,与锑矿化关系密切,空间上,锑矿化受早期硅化控制;时间上,锑矿化主要伴随早期硅化岩中的晚期硅化产生;成因上,硅化(岩)与锑矿化之间不存在必然联系,二者之内在联系,仅在碎裂硅化岩为矿质堆积提供了良好的空间。  相似文献   
10.
Based on data on the composition of ore-bearing hydrothermal solutions and parameters of ore-forming processes at various antimony and antimony-bearing deposits, which were obtained in studies of fluid inclusions in ore minerals, we investigated the behavior of Sb(III) in the system Sb–Cl–H2S–H2O describing the formation of these deposits.

We also performed thermodynamic modeling of native-antimony and stibnite dissolution in sulfide (mHS = 0.0001−0.1) and chloride (mCl = 0.1−5) solutions and the joint dissolution of Sb(s)0 and Sb2S3(s) in sulfide-chloride solution (mHS = 0.01; mCl = 1) depending on Eh, pH, and temperature. All thermodynamic calculations were carried out using the Chiller computer program. Under the above conditions, stibnite precipitates in acid, weakly acid to neutral, and medium redox solutions, whereas native antimony precipitates before stibnite under more reducing conditions in neutral to alkaline solutions.

The metal-bearing capacity of hydrothermal solutions (200–250 °C) of different compositions and origins has been predicted. We have established that the highest capacity is specific for acid (pH = 2–3) high-chloride solutions poor in sulfide sulfur and alkaline (pH = 7–8) low-chloride low-sulfide solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号