首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   4篇
  2004年   1篇
  2002年   1篇
  1997年   1篇
  1996年   1篇
排序方式: 共有4条查询结果,搜索用时 156 毫秒
1
1.
In the present paper, the application of the sliding mode control (SMC) scheme is discussed in a systematic manner for controlling the vibration of tall buildings with an Active Tuned Mass Damper (ATMD) installed at the top floor. It is shown that the application of the SMC theory for buildings with ATMD may lead to large responses in the building due to the interaction effect from the ATMD caused by the comparatively large response of the ATMD. Based on the theory of compensators, a method is proposed which eliminates the interaction effect from the ATMD to the building and thus prevents large response in the building. The results are demonstrated through simple numerical examples of building–ATMD system subjected to initial condition loading as well as two different types of external excitations. © 1997 by John Wiley & Sons, Ltd.  相似文献   
2.
使用Kanai-Tajimi地震动模型,建立了主动调谐质量阻尼器(ATMD)结构系统的传递函数。将ATMD最优参数的评价准则定义为:设置ATMD结构均方根位移(解析式)的最小值的最小化。将ATMD有效性的评价准则定义为:设置ATMD结构均方根位移的最小值的最小化与未设置ATMD结构的均方根位移之比。根据逃择的评价准则,评价了地震卓越频率系数(EDFR)对ATMD抗震控制性能的影响。同时也评价了EDFR对被动调谐质量阻尼器(PTMD)抗震控制性能的影响。  相似文献   
3.
Active multiple tuned mass dampers (AMTMD) consisting of many active tuned mass dampers (ATMDs) with a uniform distribution of natural frequencies have been, for the first time, proposed for attenuating undesirable vibrations of a structure under the ground acceleration.The multiple tuned mass dampers (MTMD) in the AMTMD is manufactured by keeping the stiffness and damping constant and varying the mass. The control forces in the AMTMD are generated through keeping the identical displacement and velocity feedback gain and varying the acceleration feedback gain. The structure is represented by its mode‐generalized system in the specific vibration mode being controlled using the mode reduced‐order method. The optimum parameters of the AMTMD are investigated to delineate the influence of the important parameters on the effectiveness and robustness of the AMTMD by conducting a numerical searching technique. The parameters include the frequency spacing, average damping ratio, tuning frequency ratio, total number and normalized acceleration feedback gain coefficient. The criterion, which can be stated as the minimization of the minimum values of the maximum dynamic magnification factors (i.e. Min.Min.Max.DMF), is chosen for the optimum searching. Additionally, for the sake of comparison, the results of the optimum MTMD (the passive counterpart of AMTMD) and ATMD are also taken into account in the present paper. It is demonstrated that the proposed AMTMD can be expected to significantly reduce the oscillations of structures under the ground acceleration. It is also shown that the AMTMD can remarkably improve the performance of the MTMD and has higher effectiveness than ATMD. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
4.
An efficient and simple non-linear active control method called Bounded-Force Control (BFC) method has been developed. The theoretical development and application examples of the BFC method has been presented in several publications where it was shown that the BFC is more efficient than the Linear Quadratic Regulator (LQR) method in terms of maximum control force and power requirements when applied to an Active Tuned Mass Damper (ATMD) system. Following a brief review of the fundamental concept of the BFC and a discussion of its main advantages, the results of an experimental investigation using a three-storey shear building model excited by a shaking table and controlled by an electromagnetic linear motor are presented. The experimental results were in perfect agreement with the analytical results, thus confirming the validity of the proposed BFC algorithm.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号