首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1084篇
  免费   274篇
  国内免费   627篇
测绘学   16篇
大气科学   1083篇
地球物理   125篇
地质学   310篇
海洋学   245篇
天文学   8篇
综合类   39篇
自然地理   159篇
  2024年   24篇
  2023年   40篇
  2022年   61篇
  2021年   93篇
  2020年   95篇
  2019年   89篇
  2018年   87篇
  2017年   75篇
  2016年   75篇
  2015年   87篇
  2014年   108篇
  2013年   127篇
  2012年   117篇
  2011年   79篇
  2010年   96篇
  2009年   103篇
  2008年   67篇
  2007年   80篇
  2006年   63篇
  2005年   47篇
  2004年   37篇
  2003年   48篇
  2002年   49篇
  2001年   33篇
  2000年   38篇
  1999年   26篇
  1998年   23篇
  1997年   23篇
  1996年   22篇
  1995年   16篇
  1994年   9篇
  1993年   16篇
  1992年   4篇
  1991年   8篇
  1990年   8篇
  1989年   5篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1954年   1篇
排序方式: 共有1985条查询结果,搜索用时 0 毫秒
1.
2.
In the first half of winter 2020/21,China has experienced an extremely cold period across both northern and southern regions,with record-breaking low temperatures set in many stations of China.Meanwhile,a moderate La Ni?a event which exceeded both oceanic and atmospheric thresholds began in August 2020 and in a few months developed into its mature phase,just prior to the 2020/21 winter.In this report,the mid?high-latitude large-scale atmospheric circulation anomalies in the Northern Hemisphere,which were forced by the negative phase of Arctic Oscillation,a strengthened Siberian High,an intensified Ural High and a deepened East Asian Trough,are considered to be the direct reason for the frequent cold surges in winter 2020/21.At the same time,the synergistic effect of the warm Arctic and the cold tropical Pacific(La Ni?a)provided an indispensable background,at a hemispheric scale,to intensify the atmospheric circulation anomalies in middle-to-high latitudes.In the end,a most recent La Ni?a prediction is provided and the on-coming evolution of climate is discussed for the remaining part of the 2020/21 winter for the purpose of future decision-making and early warning.  相似文献   
3.
李振军  赵思雄 《大气科学》1996,20(6):662-672
本文利用常规探空资料和华东中尺度试验的部分资料,对1983年春季一次快速南下,并在江淮地区产生大范围强对流天气的冷锋进行了三维结构的分析。通过研究发现,这次冷锋过程主要有以下特征: (1) 与冷锋相对应的高空槽前存在一支下沉(DVM)气流;(2)有一强的辐合区出现在对流层中层,锋前上升运动的最大值也出现在对流层中层;(3)比较强的锋生过程主要集中于对流层中下层;(4)存在一支明显的热力直接环流(TDC),即暖湿空气沿冷锋倾斜上升;(5)在冷锋后存在一支较强的下沉气流(DVM),这支DVM对冷锋逆温层(或等温层)的形成可能有重要作用。并将此次东亚春季强冷锋个例与小仓义光(Ogura)等分析的北美春季冷锋(SESAME)个例作了对比,发现此次冷锋个例中,锋区的温度密集区主要在对流层中层,而北美SESAME个例温度密集区主要在对流层低层。这可能是由于东亚高空急流较强,动力强迫而引发锋生所致。  相似文献   
4.
将 1 960~ 1 991年的月平均 FSU风应力资料分解为旋转部分和辐散辐合部分 ,分别用以强迫模式海洋。所用的模式为一个 2层热带太平洋区域海洋模式。结果表明 ,就季节变化而言 ,不论是用旋转分量还是散合分量强迫海洋 ,都不能产生合理的冷舌 ,哪怕将旋转或散合分量放大一倍或缩小二分之一 ,也不能使冷舌的强度和分布得到合理的改善。若采用气候平均的含有季节变化的风应力 (未对旋转和辐散分量进行分离 ) ,则可产生与实际相符的海表温度分布。在此基础上 ,分别叠加旋转和辐散分量的年际异常部分 ,通过对海洋的强迫 ,可产生海表温度异常。在年际异常旋转分量的强迫下 ,可产生较强的 SSTA振荡且具有明显的 ENSO周期 ;而在辐散辐合年际异常风应力的强迫下 ,则产生较弱的 SSTA,且振荡频率较高 ,ENSO周期不很明显。这些结果说明 ,风应力的涡旋和辐散辐合分量在海温季节变化和年际变化的形成中具有不同的作用 ,即合理的冷舌分布需要风应力旋转分量和散合分量同时作用于海洋方可产生 ,而仅有异常风应力的旋转强迫就可产生合理的 EL Nino/ La Nina现象。同时 ,风应力的辐散辐合分量在海洋平均状态的形成过程中是重要的 ,但在 EN-SO过程中就对海洋的作用而言则不如旋转分量重要。  相似文献   
5.
State-of-the-art climate models have long-standing intrinsic biases that limit their simulation and projection capabilities.Significantly weak ENSO asymmetry and weakly nonlinear air–sea interaction over the tropical Pacific was found in CMIP5(Coupled Model Intercomparison Project, Phase 5) climate models compared with observation. The results suggest that a weak nonlinear air–sea interaction may play a role in the weak ENSO asymmetry. Moreover, a weak nonlinearity in air–sea interaction in the models may be associated with the biases in the mean climate—the cold biases in the equatorial central Pacific. The excessive cold tongue bias pushes the deep convection far west to the western Pacific warm pool region and suppresses its development in the central equatorial Pacific. The deep convection has difficulties in further moving to the eastern equatorial Pacific, especially during extreme El Ni o events, which confines the westerly wind anomaly to the western Pacific. This weakens the eastern Pacific El Ni o events, especially the extreme El Ni o events, and thus leads to the weakened ENSO asymmetry in climate models. An accurate mean state structure(especially a realistic cold tongue and deep convection) is critical to reproducing ENSO events in climate models. Our evaluation also revealed that ENSO statistics in CMIP5 climate models are slightly improved compared with those of CMIP3. The weak ENSO asymmetry in CMIP5 is closer to the observation. It is more evident in CMIP5 that strong ENSO activities are usually accompanied by strong ENSO asymmetry, and the diversity of ENSO amplitude is reduced.  相似文献   
6.
2014年4月大气环流和天气分析   总被引:1,自引:1,他引:1  
樊利强  张涛  孙瑾 《气象》2014,40(7):898-904
2014年4月大气环流特征为,北半球极涡呈单极型分布,中心位于喀拉海北端附近;亚洲大陆东部高压脊强度偏强,导致4月我国气温较常年同期(11.0℃)偏高1.1℃,为1961年同期以来第五高值。东亚大槽强度和位置、南支系统和西北太平洋副热带高压接近常年平均状况。4月全国平均降水量为43.7 mm,比常年同期略偏少。月内,江南南部和华南等地出现短时强降水、雷雨大风等强对流天气;北方地区出现多次沙尘天气过程;此外,部分站次出现极端高温、极端降温事件。  相似文献   
7.
东北冷涡引发的局地暴雨数值模拟研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用CDAS-NCEP/NCAR 再分析资料,应用Penn State/NCAR的高分辨率中尺度模式MM5V3-7,成功模拟出2005年7月9—12日东北冷涡诱发的一次连续雷雨过程,重点分析了7月9日造成沈阳及周边地区的一次局地暴雨过程,并对其中的一个连续发展的中β尺度对流系统的演变、中尺度结构特点进行了研究。结果表明:冷涡总是以水平旋转的中高层的干冷空气堆作为其结构特点。在冷涡的东南侧高空干冷堆的边缘区域,轨迹呈直立状,从行星边界层向上穿越整个对流层,显示出该地区存在强对流。干冷堆的边缘区域下方的低层暖湿输送是冷涡局地强对流发展的关键。局地对流发展时,出现干冷堆的边缘区域的Se上下层接近或者打通现象。  相似文献   
8.
乌拉特中旗一次寒潮天气过程分析   总被引:1,自引:0,他引:1  
通过对乌拉特中旗2010年3月13—15日的寒潮天气过程,应用天气学原理和方法进行诊断分析,总结出阻高崩溃型寒潮天气过程形成发展的特点以及预报着眼点。  相似文献   
9.
为了探讨绥中一次暴雪伴雷电天气过程的成因,利用常规观测资料、NCEP每6h间隔的1°×1°的再分析资料和营口多普勒雷达的资料,分析此过程的天气形势特点、高低空急流的作用、雷达回波的特征及反映动力、热力和水汽条件的相关物理量场的特征。结果发现:雷电发生在对流层中层的西南风急流和底层偏东风均处在最强的时刻,当对流云团发展到-20℃温度层时,温差起电产生雷电;雷电发生在低层850hPa附近存在的逆温层消失之后,同时配合低层水汽的辐合,产生了暴雪天气;雷电和强降雪发生在大气底层南风和北风转换的过程中,强降雪的时间与冷空气扩散加强的时间比较一致,当冷空气扩散到整个大气底层时强降雪结束;引起雷电和强降雪的对流不稳定层结主要处在对流层中层,并为上升运动的发生提供了动力和热力条件,促使雷电发生和强降雪的维持。  相似文献   
10.
羽状流对天然气水合物的识别起到了间接指示作用,为研究冷泉活动区气泡羽状流产生的地震响应,需建立符合实际羽状流特征的模型。为此,参考实际羽状流赋存状态,结合含气泡水体特征,在已建立模型基础上,从羽状流气泡的垂直运移规律、分布特点及羽状流外观特征上对模型进行了改进,先后获得3个羽状流模型,最后的模型Ⅲ更接近实际羽状流赋存特征。通过与实际羽状流的对比,讨论分析了模型Ⅲ的合理性,并得出结论:所建模型体现了实际羽状流气泡的本质特征,并包含了更为复杂的气泡含量变化,可用于进一步深入研究羽状流地震响应特征,也为气泡羽状流的地震识别及天然气水合物的相关研究提供了较好的数值模型。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号