首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   1篇
大气科学   3篇
  2020年   1篇
  1995年   1篇
  1993年   1篇
排序方式: 共有3条查询结果,搜索用时 31 毫秒
1
1.
A field study was conducted at a mountain-top site in northwestern Colorado. Supercooled cloud water, collected as a function of droplet size, was analyzed for anions, cations and trace elements. Enrichment factors (EF) of SO 4 2– , K+, Na+ and Cl relative to crustal and marine reference elements (Al and Na) were calculated to determine whether chemical fractionation of the aerosol occurs during cloud droplet formation. The largest EF's for all ions were found for droplets less than 10–15 µm diameter. Ratios of the small to large droplet mean EF's ranged from 1 to 2, for SO 4 2– relative to both Al and Na+, to 10 to 12 for Na+, Cl and K+, relative to Al. EF's of K+ and Cl in the bulk cloud water were in crustal and marine proportions, respectively. It was concluded that although bulk could chemistry may indicate a lack of enrichment of a species, this may not be true throughout the droplet size distribution. The higher enrichments in small droplets is likely a result of their formation on small aerosol particles whereas the large droplets form on the largest aerosol particles. This may suppress EF's in precipitation relative to the total aerosol.  相似文献   
2.
Using the Weather Research and Forecasting(WRF) model with two different microphysics schemes, the Predicted Particle Properties(P3) and the Morrison double-moment parameterizations, we simulated a stratiform rainfall event on20–21 April 2010. The simulation output was compared with precipitation and aircraft observations. The aircraft-observed moderate-rimed dendrites and plates indicated that riming contributed significantly to ice particle growth at the mature precipitation stage. Observation...  相似文献   
3.
Experiments have been performed to investigate whether the process of freezing during riming in clouds may induce oxidation of dissolved SO2 to SO 4 2– . The experiments were conducted in a cold room at varying temperatures between –6 and –15 °C. Solutions containing dissolved SO2 and NH4OH in various proportions, in the range of concentrations between 3×10–5 and 10–3 M, were sprayed. Rime was collected on a rotating cylinder and analyzed. Absorption of oxygen from laboratory air was prevented, except in the spray, to avoid spurious oxidation. Blank experiments were made at +3 to +6 °C. The results indicate clearly that, as the dominant cation becomes NH 4 + rather than H+, substantial oxidation of S(IV) occurs during riming. This is consistent with redox reactions taking place as a result of charge separation at the ice-water interface during freezing.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号