首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51235篇
  免费   9062篇
  国内免费   12912篇
测绘学   5132篇
大气科学   8772篇
地球物理   10623篇
地质学   29328篇
海洋学   5524篇
天文学   2275篇
综合类   3629篇
自然地理   7926篇
  2024年   196篇
  2023年   545篇
  2022年   1368篇
  2021年   1645篇
  2020年   1751篇
  2019年   2162篇
  2018年   1649篇
  2017年   1917篇
  2016年   2026篇
  2015年   2274篇
  2014年   2843篇
  2013年   2988篇
  2012年   3150篇
  2011年   3350篇
  2010年   2809篇
  2009年   3398篇
  2008年   3327篇
  2007年   3796篇
  2006年   3684篇
  2005年   3220篇
  2004年   2984篇
  2003年   2811篇
  2002年   2462篇
  2001年   2191篇
  2000年   2022篇
  1999年   1865篇
  1998年   1594篇
  1997年   1484篇
  1996年   1338篇
  1995年   1119篇
  1994年   1165篇
  1993年   969篇
  1992年   755篇
  1991年   536篇
  1990年   470篇
  1989年   377篇
  1988年   292篇
  1987年   184篇
  1986年   126篇
  1985年   92篇
  1984年   37篇
  1983年   33篇
  1982年   31篇
  1981年   20篇
  1980年   25篇
  1979年   34篇
  1978年   35篇
  1977年   26篇
  1975年   4篇
  1954年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The Bear Brook Watershed in Maine (BBWM) is a long-term research site established to study the response of forest ecosystem function to environmental disturbances of chronic acidic deposition and ecosystem nitrogen enrichment. Starting in 1989, the West Bear (treated) watershed received bimonthly applications of ammonium sulfate [(NH4)2SO4] fertilizer from above the canopy, whereas East Bear (reference) received ambient deposition. The treatments were stopped in 2016, marking the beginning of the recovery phase. Research at the site has focused on soils, streams, and vegetation. Here, we describe data collected over three decades at the BBWM—input and stream output nutrient fluxes, quantitative soil pits and soil chemistry, and soil temperature and moisture.  相似文献   
2.
3.
The variability of rainfall-dependent streamflow at catchment scale modulates many ecosystem processes in wet temperate forests. Runoff in small mountain catchments is characterized by a quick response to rainfall pulses which affects biogeochemical fluxes to all downstream systems. In wet-temperate climates, water erosion is the most important natural factor driving downstream soil and nutrient losses from upland ecosystems. Most hydrochemical studies have focused on water flux measurements at hourly scales, along with weekly or monthly samples for water chemistry. Here, we assessed how water and element flows from broad-leaved, evergreen forested catchments in southwestern South America, are influenced by different successional stages, quantifying runoff, sediment transport and nutrient fluxes during hourly rainfall events of different intensities. Hydrograph comparisons among different successional stages indicated that forested catchments differed in their responses to high intensity rainfall, with greater runoff in areas covered by secondary forests (SF), compared to old-growth forest cover (OG) and dense scrub vegetation (CH). Further, throughfall water was greatly nutrient enriched for all forest types. Suspended sediment loads varied between successional stages. SF catchments exported 455 kg of sediments per ha, followed by OG with 91 kg/ha and CH with 14 kg/ha, corresponding to 11 rainfall events measured from December 2013 to April 2014. Total nitrogen (TN) and phosphorus (TP) concentrations in stream water also varied with rainfall intensity. In seven rainfall events sampled during the study period, CH catchments exported less nutrients (46 kg/ha TN and 7 kg/ha TP) than SF catchments (718 kg/ha TN and 107 kg/ha TP), while OG catchments exported intermediate sediment loads (201 kg/ha TN and 23 kg/ha TP). Further, we found significant effects of successional stage attributes (vegetation structure and soil physical properties) and catchment morphometry on runoff and sediment concentrations, and greater nutrients retention in OG and CH catchments. We conclude that in these southern hemisphere, broad-leaved evergreen temperate forests, hydrological processes are driven by multiple interacting phenomena, including climate, vegetation, soils, topography, and disturbance history.  相似文献   
4.
Wetlands represent one of the world's most biodiverse and threatened ecosystem types and were diminished globally by about two‐thirds in the 20th century. There is continuing decline in wetland quantity and function due to infilling and other human activities. In addition, with climate change, warmer temperatures and changes in precipitation and evapotranspiration are reducing wetland surface and groundwater supplies, further altering wetland hydrology and vegetation. There is a need to automate inventory and monitoring of wetlands, and as a study system, we investigated the Shepard Slough wetlands complex, which includes numerous wetlands in urban, suburban, and agricultural zones in the prairie pothole region of southern Alberta, Canada. Here, wetlands are generally confined to depressions in the undulating terrain, challenging wetlands inventory and monitoring. This study applied threshold and frequency analysis routines for high‐resolution, single‐polarization (HH) RADARSAT‐2, synthetic aperture radar mapping. This enabled a growing season surface water extent hyroperiod‐based wetland classification, which can support water and wetland resource monitoring. This 3‐year study demonstrated synthetic aperture radar‐derived multitemporal open‐water masks provided an effective index of wetland permanence class, with overall accuracies of 89% to 95% compared with optical validation data, and RMSE between 0.2 and 0.7 m between model and field validation data. This allowed for characterizing the distribution and dynamics of 4 marsh wetlands hydroperiod classes, temporary, seasonal, semipermanent, and permanent, and mapping of the sequential vegetation bands that included emergent, obligate wetland, facultative wetland, and upland plant communities. Hydroperiod variation and surface water extent were found to be influenced by short‐term rainfall events in both wet and dry years. Seasonal hydroperiods in wetlands were particularly variable if there was a decrease in the temporary or semipermanent hydroperiod classes. In years with extreme rain events, the temporary wetlands especially increased relative to longer lasting wetlands (84% in 2015 with significant rainfall events, compared with 42% otherwise).  相似文献   
5.
This work provides a comprehensive physically based framework for the interpretation of the north Australian rainfall stable isotope record (δ18O and δ2H). Until now, interpretations mainly relied on statistical relationships between rainfall amount and isotopic values on monthly timescales. Here, we use multiseason daily rainfall stable isotope and high resolution (10 min) ground‐based C‐band polarimetric radar data and show that the five weather types (monsoon regimes) that constitute the Australian wet season each have a characteristic isotope ratio. The data suggest that this is not only due to changes in regional rainfall amount during these regimes but, more importantly, is due to different rain and cloud types that are associated with the large scale circulation regimes. Negative (positive) isotope anomalies occurred when stratiform rainfall fractions were large (small) and the horizontal extent of raining areas were largest (smallest). Intense, yet isolated, convective conditions were associated with enriched isotope values whereas more depleted isotope values were observed when convection was widespread but less intense. This means that isotopic proxy records may record the frequency of which these typical wet season regimes occur. Positive anomalies in paleoclimatic records are most likely associated with periods where continental convection dominates and convection is sea‐breeze forced. Negative anomalies may be interpreted as periods when the monsoon trough is active, convection is of the oceanic type, less electric, and stratiform areas are wide spread. This connection between variability of rainfall isotope anomalies and the intrinsic properties of convection and its large‐scale environment has important implications for all fields of research that use rainfall stable isotopes.  相似文献   
6.
本文回顾了自然和自然贡献情景模型发展的背景、历史和内容,概括总结了自然和自然贡献情景模型的发展进程以及联合国生物多样性与生态系统服务政府间科学—政策平台(IPBES)情景模型的概念框架,讨论了自然和自然贡献情景模型存在的问题和发展方向。为了在全球层面解决现有综合集成模型存在的问题,根据地球表层建模基本定理和生态环境曲面建模基本定理,提出了具有中国原创特点的自然与自然贡献情景模型概念框架。  相似文献   
7.
8.
景观生态分类与制图浅议   总被引:12,自引:0,他引:12  
本文在查阅分析大量文献和前人研究的基础上 ,对目前景观生态分类和景观制图作了详细的对比分析 ,认为景观分类需要结合实际区域现状 ,采用逐级分类的方法 ;同时利用 ETM遥感影像为数据源 ,以天山北麓为示范区.研制其土地利用土地覆盖变化的景观类型图。  相似文献   
9.
10.
平衡剖面的制作流程及其地质意义   总被引:9,自引:0,他引:9  
平衡剖面技术是地质思维和计算机技术的结晶,使对断层构造的研究提高到定量阶段,其依据是在垂直构造走向的剖面上,地层长度和面积(2D)或体积(3D)是均衡的。在此原理基础上利用数学手段对盆地的构造发育史进行正演和反演模拟,直观地再现地下构造的原始几何形态,迅速提供地震剖面的构造解释方案,并对解释结果进行检验(不平衡的剖面其解释一般有问题),为深刻认识构造发育史、分析油气运移及聚集规律提供依据,提高了工作效率。其结果也为盆地模拟、油藏模拟、定量计算构造伸缩量等地质研究打下了坚实的基础[1]。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号