首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5352篇
  免费   1648篇
  国内免费   2857篇
测绘学   365篇
大气科学   5640篇
地球物理   897篇
地质学   1339篇
海洋学   378篇
天文学   62篇
综合类   258篇
自然地理   918篇
  2024年   88篇
  2023年   187篇
  2022年   280篇
  2021年   357篇
  2020年   363篇
  2019年   495篇
  2018年   314篇
  2017年   382篇
  2016年   329篇
  2015年   405篇
  2014年   533篇
  2013年   579篇
  2012年   537篇
  2011年   498篇
  2010年   394篇
  2009年   469篇
  2008年   408篇
  2007年   535篇
  2006年   472篇
  2005年   358篇
  2004年   309篇
  2003年   275篇
  2002年   185篇
  2001年   195篇
  2000年   176篇
  1999年   126篇
  1998年   101篇
  1997年   93篇
  1996年   85篇
  1995年   75篇
  1994年   62篇
  1993年   50篇
  1992年   33篇
  1991年   33篇
  1990年   16篇
  1989年   20篇
  1988年   17篇
  1987年   4篇
  1986年   4篇
  1985年   6篇
  1984年   2篇
  1981年   1篇
  1980年   5篇
  1979年   1篇
排序方式: 共有9857条查询结果,搜索用时 351 毫秒
1.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   
2.
3.
Wetlands represent one of the world's most biodiverse and threatened ecosystem types and were diminished globally by about two‐thirds in the 20th century. There is continuing decline in wetland quantity and function due to infilling and other human activities. In addition, with climate change, warmer temperatures and changes in precipitation and evapotranspiration are reducing wetland surface and groundwater supplies, further altering wetland hydrology and vegetation. There is a need to automate inventory and monitoring of wetlands, and as a study system, we investigated the Shepard Slough wetlands complex, which includes numerous wetlands in urban, suburban, and agricultural zones in the prairie pothole region of southern Alberta, Canada. Here, wetlands are generally confined to depressions in the undulating terrain, challenging wetlands inventory and monitoring. This study applied threshold and frequency analysis routines for high‐resolution, single‐polarization (HH) RADARSAT‐2, synthetic aperture radar mapping. This enabled a growing season surface water extent hyroperiod‐based wetland classification, which can support water and wetland resource monitoring. This 3‐year study demonstrated synthetic aperture radar‐derived multitemporal open‐water masks provided an effective index of wetland permanence class, with overall accuracies of 89% to 95% compared with optical validation data, and RMSE between 0.2 and 0.7 m between model and field validation data. This allowed for characterizing the distribution and dynamics of 4 marsh wetlands hydroperiod classes, temporary, seasonal, semipermanent, and permanent, and mapping of the sequential vegetation bands that included emergent, obligate wetland, facultative wetland, and upland plant communities. Hydroperiod variation and surface water extent were found to be influenced by short‐term rainfall events in both wet and dry years. Seasonal hydroperiods in wetlands were particularly variable if there was a decrease in the temporary or semipermanent hydroperiod classes. In years with extreme rain events, the temporary wetlands especially increased relative to longer lasting wetlands (84% in 2015 with significant rainfall events, compared with 42% otherwise).  相似文献   
4.
天气雷达用于抗灾和减灾很重要,本文提出一种人工降雨和驱冰雹软件,给出了程序流图,对编程的关键进行了分析,最后结果表明它能提高人控作业效率。  相似文献   
5.
The precipitation patterns in flood season over China associated with the El Niño/Southern Oscillation (ENSO) are investigated, especially in the eastern China, using the rather long period rainfall data in this century. The results show that there were remarkable differences between the precipitation patterns in flood seasons of ENSO warm phase (El Niño year) and cold phase (La Niña year), as well as between the patterns in El Niño years and their following years. The most parts of China received below normal rainfall in flood season of the onset years of El Niño events, but the coastal area of Southeast China received above normal amounts. Comparatively, the most parts of China received above normal rainfall in flood season of the following years of El Niño events, but the eastern part of the reaches among the Huanghe (Yellow) River, the Huaihe River and the Haihe River, and the Northeast China received less. During ENSO cold phase, the reaches of the Changjiang (Yangtze) River and the North China received more amounts than normal rainfall in flood season of the onset years of La Niña events, and the other regions of China received less. In the following years of La Niña events, the coastal area of the Southeast China, the most part of the Northeast China and the regions between the Huanghe River and the Huaihe River received more precipitation during flood seasons, but the other parts received below normal precipitation.  相似文献   
6.
The main reasons for the high content of inorganic N and its increase by several times in the Changjiang River and its mouth during the last 40 years were analysed in this work. The inorganic N in precipitation in the Changjiang River catchment mainly comes from gaseous loss of fertilizer N, N resulting from the increases of population and livestock, and from high temperature combustions of fossil fuels. N from precipitation is the first N source in the Changjiang River water and the only direct cause of high content of inorganic N in the Changjiang River and its mouth. The lost N in gaseous form and from agriculture non-point sources fertilizer comprised about 60% of annual consumption of fertilizer N in the Changjiang River catchment and were key factors controlling the high content of inorganic N in the Changjiang River mouth. The fate of the N in precipitation and other N sources in the Changjiang River catchment are also discussed in this paper.  相似文献   
7.
Historical evidence shows block breakdown and collapse are actively occurring in large fault aligned caverns in the Yorkshire Dales karst. Deployment of ground penetrating radar at two such sites has provided detailed images of the sedimentary sequences below the present day cavern floor but no large blocks are imaged within the sediments. Solutional processes must be removing limestone from the sediment to allow continued cavern growth. Possible mechanisms to account for the lack of large blocks within the sediment fill are discussed.  相似文献   
8.
气候变化对塔里木河来自天山的地表径流影响   总被引:21,自引:10,他引:11  
塔里木河水资源主要来自天山南坡两条源流,选择西段阿克苏河和中段开都河-孔雀河作为研究区.1956-2003年研究河源山区气温呈持续升温且降水波动增加的趋势,其中1995-2003年升温强劲,升温速率高出48 a期间平均的3倍以上;降水自1986年后持续增加,20世纪90年代较80年代增幅达18%,并显示出河源山区湿岛向塔里木盆地扩展.因高山缺少气象观测,出山径流过程变化可以综合反映中高山带的气候变化.塔里木河来自天山的地表径流在1986-2003年间持续增长,以冰川融水补给为主的库玛拉克河,1994年以来年径流量增加已在前期平均值基础上提升了一个台阶;开都河以降水径流补给为主,1986-2002年出现了观测记录以来的丰水期,并使1986年后博斯腾湖水位快速上升,恢复到1958年记录的最高水位以上.两河年径流变化趋势基本相似,但也显示有西、中段的气候变化局部差异,出现丰枯水期的不一致;然而,在近16 a升温过程中,年径流增长幅度和快慢相近.  相似文献   
9.
本文根据GPS卫星反射信号在海洋参数测量、无源雷达目标探测以及大地测绘中的应用,从天线接收、信号处理运算和多路径信号抵消角度,详细地研究了GPS卫星反射信号增强技术,给出了相应天线和电路结构及信号处理方法,并进行了计算机仿真,结果表明所提出的技术能增强GPS卫星反射信号。  相似文献   
10.
基于雷达海冰图像互相关的冰漂流场测量   总被引:5,自引:2,他引:5       下载免费PDF全文
我国的渤海和黄海北部在每年冬季都出现不同程度的冰情,它直接影响结冰海区的石油平台、船舶以及港口等设施的正常作业,对海冰的观测与预报随着上述海区的开发利用越发显得重要,利用航海雷达连续准确地跟踪海冰漂移运动轨迹,是当今观测、调查、研究冰漂流移动规律的有效方法之一,我国的科研人员利用雷达成像技术对渤海的冰情进行了长期的雷达海冰观测、研究,在由雷达海冰图像对海冰的物理特征的识别、分类以及冰漂流场测量方面取得了一些进展[1-4]。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号