首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4045篇
  免费   395篇
  国内免费   546篇
测绘学   756篇
大气科学   492篇
地球物理   1063篇
地质学   1114篇
海洋学   465篇
天文学   121篇
综合类   245篇
自然地理   730篇
  2024年   37篇
  2023年   78篇
  2022年   211篇
  2021年   257篇
  2020年   262篇
  2019年   218篇
  2018年   142篇
  2017年   188篇
  2016年   160篇
  2015年   141篇
  2014年   170篇
  2013年   330篇
  2012年   200篇
  2011年   173篇
  2010年   112篇
  2009年   172篇
  2008年   198篇
  2007年   234篇
  2006年   180篇
  2005年   194篇
  2004年   132篇
  2003年   139篇
  2002年   118篇
  2001年   103篇
  2000年   108篇
  1999年   99篇
  1998年   74篇
  1997年   99篇
  1996年   67篇
  1995年   53篇
  1994年   37篇
  1993年   51篇
  1992年   34篇
  1991年   30篇
  1990年   27篇
  1989年   27篇
  1988年   28篇
  1987年   20篇
  1986年   17篇
  1985年   19篇
  1984年   11篇
  1983年   9篇
  1982年   8篇
  1981年   6篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1976年   2篇
  1971年   1篇
  1954年   1篇
排序方式: 共有4986条查询结果,搜索用时 15 毫秒
1.
为建立高精度的边坡位移预测模型,采用相空间重构(PSR)将边坡位移时间序列数据转换为多维数据,同时构造小波核函数改进的支持向量机模型,建立PSR-WSVM模型并应用于边坡位移预测。将PSR-WSVM模型预测结果与传统支持向量机(SVM)模型、小波支持向量机(WSVM)模型和基于相空间重构的支持向量机(PSR-SVM)模型预测结果进行对比,通过平均绝对误差(MAE)、平均绝对误差百分比(MAPE)和均方根误差(RMSE)3个精度评价指标验证PSR-WSVM模型的可行性。工程实例结果表明,PSR-WSVM模型预测结果的3个精度评价指标都优于另外3种模型,边坡位移预测的精度明显提升。  相似文献   
2.
Monitoring of the fluctuations of groundwater storage is particularly important in arid and semi-arid regions where water scarcity brings about various challenges. Remote sensing data and techniques play a preponderant role in developing solutions to environmental problems. The launch of Gravity Recovery and Climate Experiment (GRACE) satellites has eased the remote monitoring and evaluation of groundwater resources with an unprecedented precision over large scales. Within the scope of the current study, the latest release (RL06) of GRACE mass concentrations (Mascons) from Jet Propulsion Laboratory (JPL) dataset as well as Global Land Data Assimilation System (GLDAS) models of Noah and Catchment Land Surface Model (CLSM) were used to provide Groundwater Storage Anomalies (GWSA) over Turkey. The temporal interactions of the estimated GWSA with the climatic variables of precipitation and temperature (derived from the reanalysis datasets of CHELSA [Climatologies at High resolution for the Earth's Land Surface Areas] and FLDAS [the Famine Early Warning Systems Network Land Data Assimilation System], respectively) were investigated statistically. The results suggest that there is a descending trend (from 2003 to 2016) for Terrestrial Water Storage Anomalies (TWSA) and GWSA over Turkey with a total loss of 11 and 6 cm of water, respectively. The statistical analysis results also indicate that the monthly variations of GWSA over Turkey are highly correlated with precipitation and temperature at 2-month lag. The analysis of the climatology (long-term) values of monthly GWSA, precipitation and temperature also revealed high agreement between the variables.  相似文献   
3.
A constitutive model that captures the material behavior under a wide range of loading conditions is essential for simulating complex boundary value problems. In recent years, some attempts have been made to develop constitutive models for finite element analysis using self‐learning simulation (SelfSim). Self‐learning simulation is an inverse analysis technique that extracts material behavior from some boundary measurements (eg, load and displacement). In the heart of the self‐learning framework is a neural network which is used to train and develop a constitutive model that represents the material behavior. It is generally known that neural networks suffer from a number of drawbacks. This paper utilizes evolutionary polynomial regression (EPR) in the framework of SelfSim within an automation process which is coded in Matlab environment. EPR is a hybrid data mining technique that uses a combination of a genetic algorithm and the least square method to search for mathematical equations to represent the behavior of a system. Two strategies of material modeling have been considered in the SelfSim‐based finite element analysis. These include a total stress‐strain strategy applied to analysis of a truss structure using synthetic measurement data and an incremental stress‐strain strategy applied to simulation of triaxial tests using experimental data. The results show that effective and accurate constitutive models can be developed from the proposed EPR‐based self‐learning finite element method. The EPR‐based self‐learning FEM can provide accurate predictions to engineering problems. The main advantages of using EPR over neural network are highlighted.  相似文献   
4.
This study evaluated the spatial variability of streambed vertical hydraulic conductivity (Kv) in different stream morphologies in the Frenchman Creek Watershed, Western Nebraska, using different variogram models. Streambed Kv values were determined in situ using permeameter tests at 10 sites in Frenchman, Stinking Water and Spring Creeks during the dry season at baseflow conditions. Measurements were taken both in straight and meandering stream channels during a 5 day period at similar flow conditions. Each test site comprised of at least three transects and each transect comprised of at least three Kv measurements. Linear, Gaussian, exponential and spherical variogram models were used with Kriging gridding method for the 10 sites. As a goodness-of-fit statistic for the variogram models, cross-validation results showed differences in the median absolute deviation and the standard deviation of the cross-validation residuals. Results show that using the geometric means of the 10 sites for gridding performs better than using either all the Kv values from the 93 permeameter tests or 10 Kv values from the middle transects and centre permeameters. Incorporating both the spatial variability and the uncertainty involved in the measurement at a reach segment can yield more accurate grid results that can be useful in calibrating Kv at watershed or sub-watershed scales in distributed hydrological models.  相似文献   
5.
ABSTRACT

High performance computing is required for fast geoprocessing of geospatial big data. Using spatial domains to represent computational intensity (CIT) and domain decomposition for parallelism are prominent strategies when designing parallel geoprocessing applications. Traditional domain decomposition is limited in evaluating the computational intensity, which often results in load imbalance and poor parallel performance. From the data science perspective, machine learning from Artificial Intelligence (AI) shows promise for better CIT evaluation. This paper proposes a machine learning approach for predicting computational intensity, followed by an optimized domain decomposition, which divides the spatial domain into balanced subdivisions based on the predicted CIT to achieve better parallel performance. The approach provides a reference framework on how various machine learning methods including feature selection and model training can be used in predicting computational intensity and optimizing parallel geoprocessing against different cases. Some comparative experiments between the approach and traditional methods were performed using the two cases, DEM generation from point clouds and spatial intersection on vector data. The results not only demonstrate the advantage of the approach, but also provide hints on how traditional GIS computation can be improved by the AI machine learning.  相似文献   
6.
Representative results from a comparison of the chemical evolution of spherical collapse models without and with a intercloud medium are presented. The hot metal-rich gas distributes quickly the metals produced in supernovae throughout the galaxy, thus leading to a more homogeneous chemical evolution and flatter metallicity gradients in the gas and the stars. The stellar population is somewhat less concentrated towards the centre. The strong outflow results in a substantial loss of metals from the galaxy to its surroundings, and a lower effective yield in the galaxy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
7.
We have developed a method for analytically solving the porous medium flow equation in many different geometries for horizontal (two‐dimensional), homogeneous and isotropic aquifers containing impermeable boundaries and any number of pumping or injection wells located at arbitrary positions within the system. Solutions and results are presented for rectangular and circular aquifers but the method presented here is easily extendible to many geometries. Results are also presented for systems where constant head boundary conditions can be emulated internal to the aquifer boundary. Recommendations for extensions of the present work are briefly discussed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
8.
Recent results on chaos in triaxial galaxy models are reviewed. Central mass concentrations like those observed in early-type galaxies - either stellar cusps, or massive black holes — render most of the box orbits in a triaxial potential stochastic. Typical Liapunov times are 3–5 crossing times, and ensembles of stochastic orbits undergo mixing on timescales that are roughly an order of magnitude longer. The replacement of the regular orbits by stochastic orbits reduces the freedom to construct self-consistent equilibria, and strong triaxiality can be ruled out for galaxies with sufficiently high central mass concentrations.  相似文献   
9.
The emergence of artificial neural network (ANN) technology has provided many promising results in the field of hydrology and water resources simulation. However, one of the major criticisms of ANN hydrologic models is that they do not consider/explain the underlying physical processes in a watershed, resulting in them being labelled as black‐box models. This paper discusses a research study conducted in order to examine whether or not the physical processes in a watershed are inherent in a trained ANN rainfall‐runoff model. The investigation is based on analysing definite statistical measures of strength of relationship between the disintegrated hidden neuron responses of an ANN model and its input variables, as well as various deterministic components of a conceptual rainfall‐runoff model. The approach is illustrated by presenting a case study for the Kentucky River watershed. The results suggest that the distributed structure of the ANN is able to capture certain physical behaviour of the rainfall‐runoff process. The results demonstrate that the hidden neurons in the ANN rainfall‐runoff model approximate various components of the hydrologic system, such as infiltration, base flow, and delayed and quick surface flow, etc., and represent the rising limb and different portions of the falling limb of a flow hydrograph. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
10.
Advanced material constitutive models are used to describe complex soil behaviour. These models are often used in the solution of boundary value problems under general loading conditions. Users and developers of constitutive models need to methodically investigate the represented soil response under a wide range of loading conditions. This paper presents a systematic procedure for probing constitutive models. A general incremental strain probe, 6D hyperspherical strain probe (HSP), is introduced to examine rate‐independent model response under all possible strain loading conditions. Two special cases of HSP, the true triaxial strain probe (TTSP) and the plane‐strain strain probe (PSSP), are used to generate 3‐D objects that represent model stress response to probing. The TTSP, PSSP and general HSP procedures are demonstrated using elasto‐plastic models. The objects resulting from the probing procedure readily highlight important model characteristics including anisotropy, yielding, hardening, softening and failure. The PSSP procedure is applied to a Neural Network (NN) based constitutive model. It shows that this probing is especially useful in understanding NN constitutive models, which do not contain explicit functions for yield surface, hardening, or anisotropy. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号