首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   2篇
大气科学   1篇
地球物理   7篇
  2021年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2006年   1篇
  1995年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
In arctic and sub‐arctic environments, mercury (Hg), more specifically toxic methylmercury (MeHg), is of growing concern to local communities because of its accumulation in fish. In these regions, there is particular interest in the potential mobilization of atmospherically deposited Hg sequestered in permafrost that is thawing at unprecedented rates. Permafrost thaw and the resulting ground surface subsidence transforms forested peat plateaus into treeless and permafrost‐free thermokarst wetlands where inorganic Hg released from the thawed permafrost and draining from the surrounding peat plateaus may be transformed to MeHg. This study begins to characterize the spatial distribution of MeHg in a peat plateau–thermokarst wetland complex, a feature that prevails throughout the wetland‐dominated southern margin of thawing discontinuous permafrost in Canada's Northwest Territories. We measured pore water total Hg, MeHg, dissolved organic matter characteristics and general water chemistry parameters to evaluate the role of permafrost thaw on the pattern of water chemistry. A gradient in vegetation composition, water chemistry and dissolved organic matter characteristics followed a toposequence from the ombrotrophic bogs near the crest of the complex to poor fens at its downslope margins. We found that pore waters in poor fens contained elevated levels of MeHg, and the water draining from these features had dissolved MeHg concentrations 4.5 to 14.5 times higher than the water draining from the bogs. It was determined through analysis of historical aerial images that the poor fens in the toposequence had formed relatively recently (early 1970s) as a result of permafrost thaw. Differences between the fens and bogs are likely to be a result of their differences in groundwater function, and this suggests that permafrost thaw in this landscape can result in hotspots for Hg methylation that are hydrologically connected to downstream ecosystems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
2.
The influence of winter on methane (CH4) stored in pore water and emitted through snow was investigated in a temperate poor fen in New Hampshire over two winters. Methane accumulated beneath ice layers (1 cm) deposited by freezing rain, resulting in snow-pore air mixing ratios as high as 140 ppmv during the first winter and 600 ppmv during the second. An early winter snow crust of 300 kg m?3 caused no discontinuity in a linear mixing ratio profile and therefore was not observed to retard snowpack emissions. Methane concentration-depth profiles in pore water steepened and concentrations increased by as much as 400 μM at the 10 and 20 cm depths as the ice cover formed. This suggests that the peat-ice cover plays an important part in CH4 build-up in pore water by limiting the transport of gases between the peat and the atmosphere. Pore water concentrations gradually declined through late winter. The seasonality of dissolved CH4 in pore water over two winters and one summer showed an average annual amplitude of 1.3 gCH4m?2 (25–75cm depth range), with a winter maximum of 4.7gCH4m?2. Emissions during the winter with average snowfall accounted for a larger percentage (9.2% in 1993–1994) of total annual emission than the winter with below-average snowfall and warmer air temperature (2% in 1994–1995). Emissions averaged 56 and 26mg m?2 day?1 during the first and second winter (December, January and February), respectively.  相似文献   
3.
Current efforts to assess changes to the wetland hydrology caused by growing anthropogenic pressures in the Athabasca Oil Sands Region (AOSR) require well-founded spatial and temporal estimates of actual evapotranspiration (ET), which is the dominant component of the water budget in this region. This study assessed growing season (May–September) and peak growing season (July) ET variability at a treed moderate-rich fen and treed poor fen (in 2013–2018), open poor fen (in 2011–2014), and saline fen (in 2015–2018) using eddy covariance technique and a set of complementary environmental data. Seasonal fluctuations in ET were positively related to net radiation, air temperature and vapour pressure deficit and followed trends typical for the Boreal Plains (BP) and AOSR with highest rates in June–July. However, no strong effect of water table position on ET was found. Strong surface control on ET is evident from lower ET values than potential evapotranspiration (PET); the lowest ET/PET was observed at saline fen, followed by open fen, moderately treed fen, and heavily treed fen, suggesting a strong influence of vegetation on water loss. In most years PET exceeded precipitation (P), and positive relations between P/PET and ET were observed with the highest July ET rates occurring under P/PET ~1. However, during months with P/PET > 1, increased P/PET was associated with decreased July ET. With respect to 30-year mean values of air temperature and P in the area, both dry and wet, cool and warm growing seasons (GS) were observed. No clear trends between ET values and GS wetness/coldness were found, but all wet GS were characterized by peak growing seasons with high daily ET variability.  相似文献   
4.
Ground water recharge is assumed to occur primarily at raised bog crests in northern peatlands, which are globally significant terrestrial carbon reservoirs. We synoptically surveyed vertical profiles of peat pore water δ18O and δ2H from a range of bog and fen landforms across the Glacial Lake Agassiz Peatlands, northern Minnesota. Contrary to our expectations, we find that local‐scale recharge penetrates to not only the basal peat at topographically high bog crests but also transitional Sphagnum lawns and low‐lying fen water tracks. Surface landscape characteristics appear to control the isotopic composition of the deeper pore waters (depths ≥0.5 m), which are partitioned into discrete ranges of δ18O on the basis of landform type (mean ± standard deviation for bog crests = ?11.9 ± 0.4‰, lawns = ?10.6 ± 0.1‰, fen water tracks = ?8.8 ± 1.0‰). Fen water tracks have a shallow free‐water surface that is seasonally enriched by isotope fractionating evaporation, fingerprinting recharge to underlying pore waters at depths ≥3 m. Isotope mass balance calculations indicate on average 12% of the waters we sampled from the basal peat of the fen water tracks was lost to surface evaporation, which occurred prior to advection and dispersion into the underlying formation. These new data provide direct support for the hypothesis that methane production in deeper peat strata is fuelled by the downward transport of labile carbon substrates from the surface of northern peat basins. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
5.
6.
Harpacticoids are an important component of meiofaunal assemblages in springs. No information so far has been available on harpacticoid assemblages of the Western Carpathian spring fens, unique biotopes of high conservation value which cover a very long gradient of mineral content of groundwater, due to the variable geological background setting. Spring fens are isolated habitats of different age which can be assessed by radiocarbon dating of their basal sediment layers. This enables to test a possible effect of habitat age on species composition and species richness. In this study, we examined harpacticoid assemblages in 50 permanent tree-less spring fens (helocrenes) in the Western Carpathians (Slovakia and Czech Republic) in terms of species composition, total abundance, species density, and species richness. We tested mainly the effect of 12 explanatory variables describing water chemistry and temperature, climatic conditions, amount of nutrients, organic carbon, sediment structure, habitat age and size, using Canonical Correspondence Analyses (CCA) with stepwise forward selection. For the computation of species richness rarefaction was used. In total, 20 harpacticoid species were recorded with the total median density of 950 individuals in m−2. Three significant explanatory variables, Ellenberg Indicator Values of plant community for nutrients, in situ measured pH, and average January temperature, explained together 19.0% (adj. 13.7%) of the total variance in the species composition data. The relationships of harpacticoids to these three explanatory variables were species specific and no uniform response of the total assemblage to the environmental variables was found (in terms of total abundance and number of species). The only exception was the influence of overall unfavourable conditions in the mineral-poor acidic Sphagnum-fens. Pilocamptus pilosus was significantly associated with a higher amount of nutrients and warmer climate. Nutrient enrichment was clearly indicated by a decrease or absence of crenophile Bryocamptus cuspidatus, and accompanied by an increase in ubiquitous Attheyella crassa. Moraria brevipes was confined to low pH, B. cuspidatus showed a high tolerance for low pH, whereas Bryocamptus echinatus preferred alkaline conditions. Despite a significant correlation between habitat age and species density we found no clear evidence that any colonisation driven process could influence the number of harpacticoid species within the tested time scale. We hypothesize that rather other habitat characteristics connected with age, i.e. habitat heterogeneity and stability, may be determinant for species richness. The occurrence of some species (e.g. P. pilosus, B. cuspidatus) was clearly geographically limited, but due to the spatial structuring of significant environmental variables no conclusion on dispersal limitations could be made.  相似文献   
7.
Northern peatlands store approximately one-third of the terrestrial soil carbon (C), although they cover only 3% of the global land mass. Northern peatlands can be subdivided into bogs and fens based on their hydrology and biogeochemistry. Peatland hydrology and biogeochemistry are tightly coupled to climate and, therefore, may be very sensitive to climate variability and change. To address the fate of the large peatland soil C storage under a future changed climate, a peatland C model, the McGill Wetland Model (MWM), was coupled to a land surface climate model (the wetland version of the Canadian Land Surface Scheme, CLASS3W), referred as CLASS3W-MWM. We evaluated the CLASS3W-MWM for a bog (Mer Bleue, located at 45.41°N, 75.48°W, in eastern Canada) and a poor fen (Degerö Stormyr, located at 64°11′N, 19°33′E, in northern Sweden).

CLASS3W-MWM captured the magnitude and direction of the present day C cycling very well for both bogs and fens. Moreover, the seasonal and interannual variability were reproduced reasonably well. Root mean square errors (RMSE) were <0.65 and the degree of agreements (d*) were >0.8 for the components of net ecosystem production (NEP) for both the Mer Bleue bog and the Degerö Stormyr fen. The performance of the coupled model for both bog and fen is similar to that of the stand-alone MWM driven by observed weather rather than simulated surface and soil climate. This modelling study suggests that northern peatlands are hydrologically and thermally conservative ecosystems. It was also shown that C cycling for bogs and fens was more sensitive to changes in air temperature than precipitation. Changes in temperature within the Intergovernmental Panel on Climate Change (IPCC) projected range switch the peatlands from a present-day C sink to a source, but projected changes in precipitation still maintain the peatlands as a C sink, although to a somewhat lesser degree. Increase in atmospheric CO2 concentration enhances C sequestration for both bogs and fens. Our sensitivity analysis suggests that northern peatlands respond to changes in temperature, precipitation and doubled CO2 concentration in a highly non-linear way. The sensitivity of C cycling in northern peatlands with respect to changes in air temperature, precipitation and the concentration of atmospheric CO2 together is not a simple addition or subtraction of the sensitivity of the individual changes. Therefore, the sensitivity of a combination of changes in temperature, precipitation and doubled CO2 concentration is very different from the sensitivity of peatlands to each environmental variable on their own. Our sensitivity analysis suggests that fens have a narrower tolerance to climate changes than bogs.

RÉSUMÉ [Traduit par la rédaction] Les tourbières du Nord renferment approximativement le tiers du carbone se trouvant dans le sol terrestre, même si elles ne couvrent que 3% des terres du globe. On peut subdiviser les tourbières du Nord en tourbières hautes et en tourbières basses selon leur hydrologie et leur biogéochimie. L'hydrologie et la biogéochimie des tourbières sont intimement liées au climat et peuvent donc être très sensibles à la variabilité et au changement climatique. Pour étudier comment évoluera le stockage du carbone dans les grands terrains tourbeux sous un climat futur modifié, nous avons couplé un modèle de carbone de tourbière, le McGill Wetland Model (MWM), à un modèle climatique de surface terrestre (la version terres humides du CLASS3W canadien), c'est-à-dire le CLASS3W–MWM. Nous avons évalué le CLASS3W–MWM pour une tourbière haute (Mer Bleue, situé à 45,41°N, 75,48°O, dans l'est du Canada) et pour une tourbière basse ombrotrophe (Degerö Stormyr, situé à 64°11′N, 19°33′E, dans le nord de la Suède).

Le CLASS3W–MWM a très bien capturé la grandeur et la direction du recyclage actuel du carbone, tant pour les tourbières hautes que pour les tourbières basses. De plus, la variabilité saisonnière et interannuelle a été raisonnablement bien reproduire. Les écarts-types étaient <0,65 et les degrés de concordance (d*) étaient >0,8 pour les composantes de la production nette de l’écosystème tant pour la tourbière haute Mer Bleue que pour la tourbière basse Degerö Stormyr. La performance du modèle couplé pour la tourbière haute et la tourbière basse est semblable à celle du MWM autonome piloté par des conditions observées plutôt que par un climat simulé de la surface et du sol. Cette étude par modèle suggère que les tourbières du Nord sont des écosystèmes hydrologiquement et thermiquement conservatifs. Il a aussi été démontré que le recyclage du carbone pour les tourbières hautes et basses était plus sensible aux changements dans la température de l'air que dans les précipitations. Des changements de température de l'ordre de ceux projetés par le Groupe d'experts intergouvernemental sur l’évolution du climat (GIEC) font que les actuels puits de carbone que constituent les tourbières se transforment en sources, mais les changements projetés dans les précipitations maintiennent encore les tourbières comme des puits de carbone, quoique dans une moindre mesure. L'accroissement de la concentration du CO2 atmosphérique améliore la séquestration du carbone à la fois pour les tourbières hautes et les tourbières basses. Notre analyse de sensibilité suggère que les tourbières du Nord réagissent aux changements dans la température et les précipitations et à une concentration doublée de CO2 d'une façon fort peu linéaire. La sensibilité du recyclage du carbone dans les tourbières du Nord par rapport aux changements dans la température de l'air, les précipitations et la concentration du CO2 atmosphérique ensemble n'est pas une simple addition ou soustraction de la sensibilité aux changements individuels. Par conséquent, la sensibilité à une combinaison de changements dans la température et les précipitations et à une concentration doublée de CO2 est très différente de la sensibilité des tourbières à chaque variable environnementale prise seule. Notre analyse de sensibilité suggère que les tourbières basses ont une plus faible tolérance aux changements climatiques que les tourbières hautes.  相似文献   
8.
Patterns in aquatic Clitellata assemblage composition are known to be driven by several environmental gradients, with water chemistry and substratum characteristics being particularly important. In this study we explored 54 isolated spring fens across the eastern Czech Republic and Slovakia. These fens varied in calcium and magnesium concentrations, forming a sharp and well defined environmental gradient running from calcium-poor acidic fens to extremely calcium-rich tufa-forming fens. We found that the main changes in clitellate species composition were controlled by this gradient, and/or total organic carbon content, over a wide area, including fen sites differing in other environmental conditions and historical development. However, this pattern was weakened in sites with a high organic matter content, which represented a second driver of change in assemblage composition along with water temperature. Three main types of fens were determined using cluster analysis based on clitellate assemblage composition. However, only the first type, which included tufa-forming fens, was found to fit with the previously established spring fen types based on vegetation (i.e. extremely mineral-rich fens with a tufa, brown-moss mineral-rich fens, mineral-rich Sphagnum fens and mineral-poor Sphagnum fens). The second clitellate type included sites with low temperatures and occasional desiccation, while the third type was characterised by high temperatures and trophy. Using eight environmental predictors, we were able to significantly explain changes in the population abundances of all 12 common species (i.e. recorded at 15-plus sites). The results from individual species modelling also suggests that an increase in organic matter content can trigger compositional shifts towards assemblages of common eurytopic tubificid species. Thus, human-induced eutrophication and negative changes in spring fen hydrology, mainly drying up, can represent a serious threat for species-specific assemblages of aquatic clitellates, especially at alkaline sites due to their isolated and spatially limited nature.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号