首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   3篇
  国内免费   6篇
大气科学   18篇
地球物理   2篇
地质学   4篇
海洋学   11篇
综合类   1篇
  2022年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有36条查询结果,搜索用时 109 毫秒
1.
邻苯二甲酸二甲酯及其异构体的好氧微生物降解   总被引:3,自引:0,他引:3  
3种苯二甲酸二甲酯异构体(邻、间和对苯二甲酸二甲酯)主要应用于化学工业,作为增塑剂和生产聚酯的原料。用邻苯二甲酸二丁酯为惟一碳源,从红树林底泥中驯化、富集、培养、分离得到的微生物对邻苯二甲酸二甲酯(Dimethylphthalate,DMP)及其异构体对苯二甲酸二甲酯(Terephthalate,DMT)和间苯二甲酸二甲酯(Isophthalate,DMI)具有较强的降解作用。此菌株16SrDNA分子生物学的鉴定为Rhodococcusruber1k。实验得出该菌能够在苯二甲酸二甲酯作为惟一碳源和能源的培养基中生长。浓度为50mg·L-1的DMP、DMI和DMT分别在6、10、11d内可以完全被降解;DMP能够在好氧条件下被该菌快速降解,生成邻苯二甲酸一甲酯(monomethylphthalate,MMP)和邻苯二甲酸(phthalicacid,PA)2种主要中间产物,最终可以完全矿化成CO2和H2O;该菌对DMI和DMT的降解速度则比DMP慢。两者的降解中间产物间苯二甲酸一甲酯(MMI)和对苯二甲酸一甲酯(MMT)却不能被Rhodococcusruber1k继续降解而在培养基中积累。结果表明苯二甲酸二甲基酯的3种异构体能够被红树林底泥中的土著微生物降解。降解速度及降解途径与底物的化学结构有密切关系。  相似文献   
2.
Atmospheric dimethyl sulfide (DMS) and sulfur dioxide (SO2) concentrations were measured at Baring Head, New Zealandduring February and March 2000. Anti-correlated DMS and SO2 diurnalcycles, consistent with the photochemical production of SO2 from DMS, were observed in clean southerly air off the ocean. The data is used to infer a yield of SO2 from DMS oxidation. The estimated yields are highly dependent on assumptions about the DMS oxidation rate. Fitting the measured data in a photochemical box model using model-generated OH levels and the Hynes et al. (1986) DMS + OH rate constant suggests that theSO2 yield is 50–100%, similar to current estimates for the tropical Pacific.However, the observed amplitude of the DMS diurnal cycle suggests that the oxidation rate is higher than that used by the model, and therefore, that theSO2 yield is lower in the range of 20–40%.  相似文献   
3.
Simultaneous measurements of rain acidity and dimethyl sulfide (DMS) at the ocean surface and in the atmosphere were performed at Amsterdam Island over a 4 year period. During the last 2 years, measurements of sulfur dioxide (SO2) in the atmosphere and of methane sulfonic acid (MSA) and non-sea-salt-sulfate (nss-SO4 2-) in rainwater were also performed. Covariations are observed between the oceanic and atmospheric DMS concentrations, atmospheric SO2 concentrations, wet deposition of MSA, nss-SO4 2-, and rain acidity. A comparable summer to winter ratio of DMS and SO2 in the atmosphere and MSA in precipitation were also observed. From the chemical composition of precipitation we estimate that DMS oxidation products contribute approximately 40% of the rain acidity. If we consider the acidity in excess, then DMS oxidation products contribute about 55%.  相似文献   
4.
蛋白二硫键异构酶(PDI)是内质网中的关键酶, 参与蛋白合成过程中二硫键的形成、还原和异构。本文首次从拟穴青蟹(Scylla paramamosain)克隆获得了PDI基因cDNA全长, 该序列长度为2015bp, 开放阅读框为1452bp, 编码483个氨基酸。荧光定量PCR检测发现PDI存在于拟穴青蟹的多个组织中; 在拟穴青蟹卵巢发育过程中, PDI基因的表达量在前4个时期逐渐上升, 到了第5期(成熟期)表达量则下降, 表明PDI参与了卵巢发育的蛋白合成过程。免疫组化表明, 拟穴青蟹卵母细胞存在PDI阳性反应, 进一步为该分子参与卵巢发育提供了形态学证据。  相似文献   
5.
对黄河三角洲东北部地区的高分辨率水声学资料进行了综合研究。根据所记录的破坏土体变形程度、运动产生的平面形状和地貌特征形态,对土体失稳过程进行分类:浅表土体变形、塌陷凹坑、滑坡和沉积物重力流。结果表明:(1)浅表土体形变的变形程度最低,出现在研究区斜坡上部平滑海底,主要为绳网状泄水构造和表层拉张裂隙。(2)塌陷凹坑在研究区内广泛出现,是局部土体液化后发生了垂直沉降的结果。(3)滑坡多发生在水下斜坡的中上部,由弧形塌陷区、狭窄的冲沟通道和负地形沉积物堆积区组成。滑坡陡坎后缘发现拉张裂隙。(4)沉积物重力流是土体发生变形程度最大,搬运距离最长的土体破坏变形形式。局部区域多次受到沉积物重力流切割和充填作用。  相似文献   
6.
7.
邻苯二甲酸二甲酯(dimethyl phthalate,DMP)是近海环境有机污染物之一,不仅对海洋生物造成毒害,且能在生物体内富集和放大,对海洋生态系统形成严重威胁。本文以鼠尾藻(Sargassum thunbergii)为研究对象,通过测定比生长速率、叶绿素a含量、光合和呼吸速率、光合基因rbcL转录水平上的相对表达量等指标,研究了鼠尾藻对不同浓度DMP的响应。结果表明,低浓度的DMP(0.lmg/L)短时间内(≤15d)能促进鼠尾藻的生长和叶绿素a的合成,并使藻体的光合作用增强,诱导光合基因rbcL的表达,而在高浓度DMP(≥0.3mg/L)的作用下,鼠尾藻的生长速率、光合和呼吸速率、rbcL基因的表达量均随着暴露时间的延长呈明显下降趋势,且DMP浓度越高,降幅越大。以上研究结果对了解DMP对鼠尾藻胁迫的影响机制奠定了基础,为保护海洋经济藻类的养殖环境提供了理论依据。  相似文献   
8.
This study reports comparisonsbetween model simulations, based on current sulfurmechanisms, with the DMS, SO2 and DMSOobservational data reported by Bandy et al.(1996) in their 1994 Christmas Island field study. For both DMS and SO2, the model results werefound to be in excellent agreement with theobservations when the observations were filtered so asto establish a common meteorological environment. Thisfiltered DMS and SO2 data encompassedapproximately half of the total sampled days. Basedon these composite profiles, it was shown thatoxidation of DMS via OH was the dominant pathway withno more than 5 to 15% proceeding through Cl atoms andless than 3% through NO3. This analysis wasbased on an estimated DMS sea-to-air flux of 3.4 ×109 molecs cm-2 s-1. The dominant sourceof BL SO2 was oxidation of DMS, the overallconversion efficiency being evaluated at 0.65 ± 0.15. The major loss of SO2 was deposition to theocean's surface and scavenging by aerosol. Theresulting combined first order k value was estimated at 1.6 × 10-5 s-1. In contrast to the DMSand SO2 simulations, the model under-predictedthe observed DMSO levels by nearly a factor of 50. Although DMSO instrument measurement problems can notbe totally ruled out, the possibility of DMSO sourcesother than gas phase oxidation of DMS must beseriously considered and should be explored in futurestudies.  相似文献   
9.
Several trace sulfur gases that can have a significant influence on atmospheric chemistry are emitted from biological systems. In order to begin to address biological questions on the mechnisms of production of such gases, laboratory-scale experiments have been developed that reproduce such emissions under controlled conditions. Using a flux chamber technique, flats containing soil, or soil plus plants were sampled for the net fluxes of sulfur gases. The major sulfur gas emitted from all the plants tested (corn, alfalfa, and wheat) was dimethyl sulfide (DMS). Alfalfa and wheat also emitted lesser amounts of methanethiol, variable amounls of hydrogen sulfide, and in some experiments wheat emitted carbon disulfide. The use of a plant incubator allowed a systematic study of the effects of variables such as temperature, photon flux, and carbon dioxide levels, on these emissions. Fluxes of all the emitted sulfur gases increased exponentially with increasing air temperature, and increased with increasing photon flux up to a saturation level of \~300 E/m–2 sec-1. Three to four-fold changes in DMS flux were observed during light to dark or dark to light transitions. By varying the CO2 content of the chamber flush gas, it was shown that the observed sulfur fluxes from corn and alfalfa were not related to the CO2 concentration. Growing these crop plants through holes in a Teflon soil-covering film allowed a separate determination of soil and foliage emissions and substantiation of the light dependent uptake of COS by growing vegetation observed in previous field studies.  相似文献   
10.
The products of the 254 nm photolysis of ppm levels of DMDS have been studied as a function of the O2 partial pressure at 760 Torr (N2 + O2) and 298±2 K. The major sulfur containing compounds detected were SO2 and CH3SO3H (methane sulfonic acid, MSA) and the major carbon containing compounds were CO, HCHO, CH3OH and CH3OOH (methyl hydroperoxide). Within the experimental error limits the observed sulfur and carbon balances were approximately 100%. CH3OOH has been observed for the first time in such a photooxidation system. Its observation provides evidence for the formation of CH3 radicals by the further oxidation of the CH3S radicals formed in the primary photolysis step.From the behavior of the DMDS photolysis products as a function of the O2 partial pressure, O3 concentration and added OH radical source it is postulated that the further reactions of CH3SOH (methyl sulfenic acid), formed in the reaction OH + CH3SCCH3 CH3SOH + CH3S, are the main source of MSA in the 254 nm photolysis of DMDS.Some of the possible implications of the results of this study for the degradation mechanisms of other atmospherically important organic sulfur compounds, in particular DMS, are briefly considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号