首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  国内免费   1篇
大气科学   2篇
地球物理   1篇
自然地理   2篇
  2014年   1篇
  2011年   1篇
  2008年   2篇
  2004年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
简要归纳了陆面露水资源独特的生态和气候效应,分析了开发利用陆面露水资源的理论依据,并重点从局地气候条件的选择和陆水凝结面的改进2个方面讨论了陆面露水资源开发利用的科学思路和技术措施。  相似文献   
2.
This paper systematically summarizes previous measuring methods and observational instruments for the magnitude of dewfall on land surface, analyzes the characteristics of common observational instruments for land surface dewfall, and describes several basic dewfall measurement methods. Moreover, the basic principles of these methods and instruments are interpreted, and their advantages, disadvantages, and applicability are analyzed. Recommendations for the further improvement of these observational instruments and the development of dewfall measuring methods are presented, and new technologies and scientific proposals for exploiting dewfall are elucidated.  相似文献   
3.
陆面露水特征及生态气候效应的研究进展   总被引:1,自引:0,他引:1  
在总结陆面降露水研究工作基础上,比较系统地讨论了降露水的形成机制;分析了与温度、湿度、风速、云特征、地形等气候和环境因素的关系;论述了陆面降露水的生态、气候和生物化学效应,同时还讨论了降露水研究中存在的几个问题。  相似文献   
4.
三江平原沼泽生态系统中露水凝结研究   总被引:8,自引:0,他引:8  
通过对三江平原露日季节变化的分析及对毛果苔草沼泽群落中露水的实地观测,探讨了年露日的出现规律及露水凝结量的时空变化。结果表明:三江平原露水出现频率较高的季节是夏秋季(6~9月),近12年来露日在66~108d/a,平均为95.42d/a;每年露水的凝结存在两个明显的峰值,分别是6月(或7月)、9月;露水量随高度的变化明显,植物冠层高度处的露水凝结量较多;由于沼泽植物茂密,叶面积较大,加之地面粗糙,单位土地面积上在植物及地面实际凝结的露水量远高于相同面积下较光滑的收集器测得的露水量。用杨木棒测得的毛果苔草地表面的露水量为2.83mm/a,折算成单位土地面积上地表面和植物叶片实际凝结的露水量为20.68mm/a,占同期降水量的5.05%。露水是影响水量平衡的重要因子。  相似文献   
5.
Dewfall is widely recognized as an important source of water for many ecosystems, especially in arid and semiarid areas, contributing to improve daily and annual water balances and leading to increased interest in its study in recent years. In this study, occurrence, frequency and amount of dewfall were measured from January 2007 to December 2010 (4 years study) to find out its contribution to the local water balance in a Mediterranean semiarid steppe ecosystem dominated by scattered tussocks of Stipa tenacissima (Balsa Blanca, Almería, SE Spain). For this purpose, we developed a dewfall measurement method, ‘The Combined Dewfall Estimation Method’ (CDEM). This method consists of a combination of the potential dewfall model, i.e. the single‐source Penman–Monteith evaporation model simplified for water condensation, with information from leaf wetness sensors, rain gauge data, soil surface temperature and dew point temperature. To assess the reliability of the CDEM, dewfall was measured in situ using weighing microlysimeters during a period of 3 months. Daily micrometeorological variables involved in a dewfall event were analysed in order to assess the significance of dewfall at this site. Dewfall condensation was recorded on 78% of the nights during the study period. Average monthly dewfall duration was 9.6 ± 3.2 h per night. Average dewfall was 0.17 ± 0.10 mm per night and was mostly dependent on dewfall duration. Dewfall episodes were longer in late autumn and winter and shorter during spring. Annual dewfall represented the 16%, 23%, 15% and 9% of rainfall on 2007, 2008, 2009 and 2010, respectively. Furthermore, when a wet period was compared to a dry one, the dewfall contribution to the water balance at the site was found to be 8% and 94%, respectively. Our results highlight the relevance of dewfall as a constant source of water in arid ecosystems, as well as its significant contribution to the local water balance, mainly during dry periods where it may represent the only source of water at the site. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号