首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3370篇
  免费   932篇
  国内免费   1856篇
测绘学   23篇
大气科学   79篇
地球物理   734篇
地质学   4794篇
海洋学   76篇
天文学   97篇
综合类   188篇
自然地理   167篇
  2024年   46篇
  2023年   117篇
  2022年   171篇
  2021年   154篇
  2020年   186篇
  2019年   202篇
  2018年   187篇
  2017年   211篇
  2016年   228篇
  2015年   249篇
  2014年   231篇
  2013年   213篇
  2012年   291篇
  2011年   258篇
  2010年   225篇
  2009年   286篇
  2008年   185篇
  2007年   251篇
  2006年   257篇
  2005年   213篇
  2004年   224篇
  2003年   204篇
  2002年   176篇
  2001年   163篇
  2000年   175篇
  1999年   183篇
  1998年   156篇
  1997年   128篇
  1996年   104篇
  1995年   105篇
  1994年   92篇
  1993年   90篇
  1992年   63篇
  1991年   27篇
  1990年   33篇
  1989年   18篇
  1988年   18篇
  1987年   15篇
  1986年   6篇
  1985年   4篇
  1984年   4篇
  1983年   1篇
  1979年   5篇
  1954年   3篇
排序方式: 共有6158条查询结果,搜索用时 15 毫秒
1.
Two distinct age estimates for eclogite-facies metamorphism in the Sanbagawa belt have been proposed: (i) c.  120–110 Ma based on a zircon SHRIMP age for the Western Iratsu unit and (ii) c.  88–89 Ma based on a garnet–omphacite Lu–Hf isochron age from the Seba and Kotsu eclogite units. Despite the contrasting estimates of formation ages, petrological studies suggest the formation conditions of the Western Iratsu unit are indistinguishable from those of the other two units—all ∼20 kbar and 600–650 °C. Studies of the associated geological structures suggest the Seba and Western Iratsu units are parts of a larger semi-continuous eclogite unit. A combination of geochronological and petrological studies for the Western Iratsu eclogite offers a resolution to this discrepancy in age estimates. New Lu–Hf dating for the Western Iratsu eclogite yields an age of 115.9 ± 0.5 Ma that is compatible with the zircon SHRIMP age. However, petrological studies show that there was significant garnet growth in the Western Iratsu eclogite before eclogite facies metamorphism, and the early core growth is associated with a strong concentration of Lu. Pre-eclogite facies garnet (Grt1) includes epidote–amphibolite facies parageneses equilibrated at 550–650 °C and ∼10 kbar, and this is overgrown by prograde eclogite facies garnet (Grt2). The Lu–Hf age of c.  116 Ma is strongly skewed to the isotopic composition of Grt1 and is interpreted to reflect the age of the pre-eclogite phase. The considerable time gap ( c.  27 Myr) between the two Lu–Hf ages suggests they may be related to separate tectonic events or distinct phases in the evolution of the Sanbagawa subduction zone.  相似文献   
2.
The Anzishan ophiolite, a typical ophiolitic block of early Carboniferous age in the Mian-Lue suture zone of the Qinling Mountains, central China, consists of amphibolites/metabasalts, gabbros and gabbroic cumulates. All of these rocks, as well as those in the Hunshuiguan-Zhuangke (HZ) block, have compositions similar to normal MORB and back-arc basin basalts (BABB) with high εNd(t) values, indicating that they were derived from a depleted mantle source. The Mian-Lue suture zone also contains blocks of other lithologies, e.g., rift volcanic rocks in the Heigouxia block and arc volcanic rocks in the Sanchazi block. Although they are in fault contact with each other, the presence of these different blocks in the Mian-Lue suture zone may represent a complete Wilson cycle, from initial rifting to open ocean basin to final subduction and continent-continent collision, during the late Paleozoic-early Triassic. In this region, the North and South China Cratons were separated by Paleo-Tethys at least until the early Carboniferous, and final amalgamation of both cratons along the Qinling orogenic belt took place in the Triassic.  相似文献   
3.
In the mid-1980s, it was concluded based on geochemical study that Th, Sc, La concentrations and ratios Th/Sc, La/Sc and Eu/Eu* did not wary significantly in the post-Archean time. It was impossible to judge about compositional variations of upper crust during the Riphean and Vendian, because data of that time characterized a limited number of samples from the post-Archean basins of Australia, New Zealand, and Antarctic. Considered in this work are variations of Eu/Eu*, LREE/HREE, Th/Sc, and La/Sc ratios in Upper Precambrian fine-grained siliciclastic rock of the Southern Urals western flank (Bashkirian meganticlinorium) and Uchur-Maya region (Uchur-Maya plate and Yudoma-Maya belt). As is established, only the Eu anomaly in the studied siliciclastic rocks is practically identical to this parameter of the average post-Archean shale. Three other parameters plot on the Riphean-Vendian variation curves with positive and negative excursions of diverse magnitude, which do not coincide always in time. It is assumed that these excursions likely mark stages of local geodynamic activity, destruction of pre-Riphean cratons, and progressing recycling of sedimentary material during the Riphean.  相似文献   
4.
对下扬子与华南边界结合带东延问题的地球物理探讨   总被引:2,自引:1,他引:2  
以江山-绍兴、铅山-宜春等断裂带作为华南与扬子块体之间的边界结合带,这种认识目前已基本为大家所接受.但是,这条边界结合带向东延伸入海之后的位置与去向一直是多年来研究的热点.本文基于黄、东海研究区的地球物理数据(空间重力数据、布格重力数据和地震层析成像结果),利用方向导数等处理方法,对研究区的地球物理数据进行处理,并对研究区的地球物理场进行了分析,划分出不同的区块.结合研究区的磁力与地质资料,利用各种成图、成像技术,形成一系列分析图件.在此基础上对华南与扬子块体之间的边界结合带进行了追踪.研究结果认为:该结合带的位置有可能比传统认识中自长江口至大黑山群岛的位置更向南一些,在杭州湾-长崎、对马海峡一线,并呈现向北略微凸出的弓形.边界结合带在深度上属于深大断裂带,一直可以追索到上地幔的顶部.与中朝与扬子块体之间的边界结合带相比较,本条结合带的踪迹不是十分清晰.表明加里东运动之后,该结合带的运动明显减弱.  相似文献   
5.
陕西勉略宁地区金、多金属矿产控矿条件及成矿模式   总被引:1,自引:0,他引:1  
  相似文献   
6.
The west Kunlun fold-thrust belt (WKFTB) and the Altun fold-thrust belt (AFTB) are respectively located in the southern margin of the Tarim basin, NW China. The analyses of typical structures and regional dynamics of the fold-thrust belts reveal their different structural and petroleum features and mechanisms. WKFTB differs from AFTB by abundant fault-related folds and triangles zones, and was formed by northward extrusion of the west Kunlun orogen. AFTB was affected synchronously by northward extrusion of the Altun orogen and the sinistral strike-slipping of the Altun Fault, so it is characterized by the minor scale and the monotonous structural styles. The Aqike anticline and the Aqike fault, of which the strikes are orthogonal to the strike of the fold-thrust belts, are regarded as the adjustive structures between both of the fold-thrust belts. The oil-gas pools of WKFTB develop mainly in the faulted-related anticline traps, but the oil-gas pools of AFTB develop mainly in the low fault-block and anticlines traps related with the paleo-uplifts. There are different exploration countermeasures for both of the fold-thrust belts.  相似文献   
7.
To examine the application potential of hyperspectral remote sensing techniques in classifying very low-grade metamorphic belts, the composition of clay minerals and the cyrstallinity of illite from mudstones were measured using XRD and VIS-SWIR (400-2500 nm) reflectance spectroscopy. Based on the illite cyrstallinity, Kubler Index (KI), the Early Triassic LuoLou Group and the Middle Triassic lower Baifeng Formation were classified as the lower Epizone with KI△2θ° ranging from 0.22 to 0.25, the upper Baifeng Formation as upper anchizone with KI△2θ°ranging from 0.26 to 0.33, and the Hekou Formation as lower anchizone with KI△2θ° ranging from 0.38 to 0.40. According to a KI△2θ° value of 0.43, it is possible that there may exist a local diagenetic zone in the upper strata. The illite cyrstallinity Kubler index and the metamorphic grade increase from the bottom to the top of the stratigraphic sequence. The metamorphic grade boundaries nearly match the stratigraphic boundaries, indicating a burial metamorphism nature for the stratigraphic sequence. From the bottom to the top of the sequence, the spectral absorption band center of clay minerals from fresh rocks is around 2200 nm. The absorption band centers change towards shorter wavelengths: the Luolou Group being at 2220 nm, the Baifeng Formation at 2217-2213 nm, the lower member of the Hekou Formation at 2214-2206 nm, and the upper member of the Hekou Formation at 2205-2197 nm. The spectral absorption band center of illite shows the same change pattern. These results indicate that very low-grade metamorphic belts can be subdivided using spectral indices of clay minerals, which are measured by using field portable spectroradiometers. However, it may not work well with satellite and airborne sensors.  相似文献   
8.
Sensitive high-resolution ion microprobe U–Pb dating showsthat a biotite orthogneiss from the Hercynian belt of westerncentral Iberia contains 1000–300 Ma zircon. Older, 1000–570Ma ages within this range represent inherited, detrital materialamong which four age components may be recognized:  相似文献   
9.
华南锑矿带是我国乃至世界上最重要的锑成矿带, 分布有众多大型-超大型单锑型锑矿床。本文以滇东南木利锑矿床作为主要研究对象, 并与华南锑矿带内单锑型矿床中最典型的锡矿山和独山锑矿田(床)进行详细的基础地质特征对比研究。发现对于单锑型锑矿田(床)而言, 无论是矿田尺度还是矿床尺度, 普遍具有“石英-辉锑矿”和“方解石-辉锑矿”两种矿石类型。同一矿田内, 部分矿床(段)以“石英-辉锑矿”的矿物组合为主, 部分以“方解石-辉锑矿”的矿物组合为主; 而矿床(段)尺度内, 又往往表现为上部“石英-辉锑矿”型矿物组合, 下部为“方解石-辉锑矿”型矿物组合的两层楼模式。该模型的提出对于华南锑矿带单锑型矿床成因研究和找矿勘查具有重要意义。  相似文献   
10.
Two different Pan-African tectono-metamorphic events are recognised in the Taita Hill Tsavo East National Park/Galana river area, SE-Kenya (Mozambique belt) based on petrographic and geothermobarometric evidence. Structurally, this area can be subdivided into four units: (1) the easternmost part of the basement along the Galana river is characterized by subhorizontal slightly to the west and east dipping foliation planes. Migmatic paragneisses with intercalated marbles, calcsilicates and metapelites and bands of amphibolites are the dominant rock type. (2) The western part of the Galana river within the Tsavo East National Park is a ca. 25 km wide shear zone with subvertical foliation planes. The eastern part shows similar rocks as observed in unit 1, while towards west, metasedimentary units become rare and the main rock types are tonalitic gneisses with intercalated amphibolites. (3) A 10 km wide zone (Sagala Hills zone) between the strike slip zone (unit 2) and the Taita Hills (unit 4) is developed. This zone is characterized by elongated and folded felsic migmatic amphibole and garnet bearing orthogneiss bodies with intercalated bands of mafic rocks. (4) The Taita Hills are a slightly to the N dipping nappe stack. The main rock type in the Taita Hills are amphibole–biotite–plagioclase–quartz ± garnet ± clinopyroxene ± scapolite bearing migmatic gneisses with mafic bands. In the southern part, metapelites, marbles and some amphibolites are common.Although the geological structures are different in units 1 and 2, the calculated PT conditions are similar with peak PT of 760–820 °C and 7.5–9.5 kbar. Temperatures in unit 3 (Sagalla Hills zone) and unit 4 (Taita Hills) are slightly higher ca. 760–840 °C, but pressure is significantly higher, ranging from 10 to 12 kbar. Sillimanite growth around kyanite, garnet zonation pattern, mineral reaction textures, and PT calculations constrain a “clock-wise” PT-path with near isobaric cooling following the peak of metamorphism. The different PT conditions, tectonic setting, and a different age of metamorphism are evidence that units 1 and 2 (Galana river) belong to a different tectono-metamorphic event than unit 3 (Sagala Hills zone) and 4 (Taita Hills). The major shear zone (unit 2) marks a tectonic suture dividing the two different tectono-metamorphic domains. It is also likely that it played an important role during exhumation of the granulite facies rocks from units 3 and 4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号