首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
大气科学   5篇
  2016年   1篇
  2013年   4篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Clean Development Mechanism (CDM) project developers have long complained about the complexities of project-specific baseline setting and the vagaries of additionality determination. In response to this, the CDM Executive Board took bold steps towards the standardization of CDM methodologies, culminating in the approval of guidelines for the establishment of performance standards in November 2011. The guidelines specify a performance standard stringency level for both baseline and additionality of 80% for several priority sectors and 90% for all other sectors. However, an analysis of 14 large-scale CDM methodologies that use performance standard approaches challenges this top-down approach to the performance standard design. An appropriate performance standard stringency level strongly depends on sector and technology characteristics. A single stringency level for baseline and additionality determination is appropriate only for greenfield projects, but not for retrofit ones. Overly simple, highly aggregated performance standards are unlikely to ensure high environmental integrity, and difficult questions regarding stringency and updating frequency will eventually have to be addressed on a rather disaggregated level. A careful balance between data requirements and the practicability of performance standards is essential because the heavy data requirements of the existing performance standard methodologies have been the key barrier to their actual implementation.

Policy relevance

CDM regulators have been pushed by many stakeholders to standardize baseline setting and eliminate project-specific additionality determination. At first glance, performance standards seem to provide the perfect solution for both tasks. However, a one-size-fits-all political decision – e.g. the average of the top 20% performers as enshrined in the Marrakech Accords – is inappropriate. Substantial disaggregation of performance standards is required both technologically and geographically in order to limit over- and under-crediting and close loopholes for non-additional projects. As a lack of reliable and complete data has been and will be a key bottleneck for the development of performance standards, international support for data collection will be indispensable, but costly, and time-consuming. Empirically driven, techno-economic assessments of performance standard stringency levels must be the central task of the future work on standardized methodologies, and should not be sidelined by perceived needs of policy makers to take bold decisions under time pressures.  相似文献   
2.
《Climate Policy》2013,13(3):242-254
The Clean Development Mechanism (CDM) under the Kyoto Protocol allows industrialized countries to use credits from greenhouse gas (GHG) abatement projects in developing countries. A key requirement of the CDM is that the emission reductions be real, measurable and additional. This article evaluates how the additionality of CDM projects has been assessed in practice. The analysis is mainly based on a systematic evaluation of 93 registered CDM projects and comes to the conclusion that the current tools for demonstrating additionality are in need of substantial improvement. In particular, the application of the barrier analysis is highly subjective and difficult to validate in an objective and transparent manner. Key assumptions regarding additionality are often not substantiated with credible, documented evidence. In a considerable number of cases it is questionable whether the emission reductions are actually additional. Based on these findings, practical recommendations for improving the assessment of additionality are provided.  相似文献   
3.
If carbon sequestration is to be a cost-effective substitute for reducing emissions then it must occur under a framework that ensures that the sequestration is additional to what would otherwise have occurred, the carbon is stored permanently, and any leakage is properly accounted for. We discuss significant challenges in meeting these requirements, including some not previously recognized. Although we focus on sequestration in soil, many of the issues covered are applicable to all types of sequestration. The common-practice method for determining additionality achieves its intention of reducing transaction costs in the short term but not in the medium to long term. Its design results in the least costly, additional abatement-measures being excluded from policy support and fails to address how, in the case of sequestration, revisions to the additionality of sequestering practices should apply not just to the future, but in theory, also retrospectively. Permanence is sometimes approximated as 100 years of sequestration. Re-release of sequestered carbon after this will not only reverse the sequestration, but may raise atmospheric carbon to higher levels than they would have been if the sequestration had never occurred. Leakage associated with sequestration practices can accumulate over time to exceed the total level of sequestration; nonetheless, adoption of such practices can be attractive to landholders, even when they are required to pay for this leakage at contemporary prices.

Policy relevance

Globally, much has been written and claimed about the ability to offset emissions with sequestration. The Australian Government plans to use sequestration to source much of the abatement required to reach its emissions targets. Designing effective policy for sequestration will be challenging politically, and will involve substantial transaction costs. Compromises in policy design intended to make sequestration attractive and reduce transaction costs can render it highly inefficient as a policy.  相似文献   

4.
There has been considerable debate on the merits of standardized baselines (SBLs) in the clean development mechanism (CDM), and how such baselines could reduce transaction costs for CDM projects. It has not been considered whether the voluntary versus mandatory use of SBLs by CDM project developers can affect the environmental integrity of the CDM. An example is given in which SBLs are applied to a homogeneous output industry in order to illustrate how the voluntary use of SBLs could lead – even with relatively stringent benchmarks – to over-crediting of emission reduction credits.  相似文献   
5.
ABSTRACT

The Paris Agreement requires mitigation contributions from all Parties. Therefore, the determination of additionality of activities under the market mechanisms of its Article 6 will need to be revisited. This paper provides recommendations on how to operationalize additionality under Article 6. We first review generic definitions of additionality and current approaches for testing of additionality before discussing under which conditions additionality testing of specific activities or policies is still necessary under the new context of the Paris Agreement, that is, in order to prevent increases of global emissions. We argue that the possibility of ‘hot air’ generation under nationally-determined contributions (NDCs) requires an independent check of the NDC’s ambition. If the NDC of the transferring country does contain ‘hot air’, or if the transferred emission reductions are not covered by the NDC, a dedicated additionality test should be required. While additionality tests of projects and programmes could continue to be done through investment analysis, for policy instruments new approaches are required. They should be differentiated according to type of policy instrument. For regulation, we suggest calculating the resulting pay-back period for technology users. If the regulation generates investments exceeding a payback period threshold, it could be deemed additional. Similarly, carbon pricing policies that generate a carbon price exceeding a threshold could qualify; for trading schemes an absence of over-allocation needs to be shown. The threshold should be differentiated according to country categories and rise over time.

Key policy insights
  • Without additionality testing, market mechanisms under the Paris Agreements might lead to an international diffusion of ‘hot air’. To avoid this, an independent assessment of NDC ambition is in order. Otherwise, activities under the mechanisms need to undergo specific additionality tests.

  • Additionality testing of projects and programmes should build on the experience developed under the Kyoto Protocol mechanisms.

  • Bold approaches are needed for assessing additionality of policies. To avoid cumbersome assessment of all activities triggered by such policies, highly aggregated approaches are suggested, ranging from payback period thresholds for technologies mandated by regulation to minimum price levels triggered by carbon pricing policies. Over time, the stringency of threshold values should increase.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号