首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
测绘学   1篇
大气科学   1篇
  2015年   1篇
  1998年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Turbulent flux measurements both above and beneath the canopy of a boreal aspen forest are described. Velocity skewness showed that, beneath the aspen canopy, turbulence was dominated by intermittent, downward penetrating gusts. Eulerian horizontal length scales calculated from integration of the autocorrelation function or spectral peaks were 9.0 and 1.4 times the mean aspen height of 21.5 m respectively. Above-canopy power spectral slopes for all velocity components followed the -2/3 power law, whereas beneath-canopy slopes were closer to -1 and showed a spectral short cut in the horizontal and vertical components. Cospectral patterns were similar both above and beneath the canopy. The Monin–Obukhov similarity function for the vertical wind velocity variance was a well-defined function of atmospheric stability, both above and beneath the canopy. Nocturnal flux underestimation and departures of this similarity function from that expected from Monin–Obukhov theory were a function of friction velocity. Energy balance closure greater than 80% was achieved at friction velocities greater than 0.30 and 0.10 m s-1, above and below the aspen canopy, respectively. Recalculating the latent heat flux using various averaging periods revealed a minimum of 15 min were required to capture 90% of the 30-min flux. Linear detrending reduced the flux at shorter averaging periods compared to block averaging. Lack of energy balance closure and erratic flux behaviour led to the recalculation of the latent and sensible heat fluxes using the ratio of net radiation to the sum of the energy balance terms.  相似文献   
2.
Due to the growing demand on more accurate prediction of biophysical properties (e.g., leaf area index) or carbon balance models based on remotely sensed data, the understory effect needs to be separated from the overstory. Reflectance models can provide possibility to model and retrieve understory reflectance over large scales, but ground truth data is needed to validate such models and algorithms. In this study, we documented the seasonal variation (April–September) and spectral changes occurring in understory layers of a typical European hemi-boreal forest. The understory composition was recorded and its spectra measured with an ASD FieldSpec Hand-Held UV/VNIR Spectroradiometer eight times at four site types during the growing period (from May to September) in 2013. The collected dataset presented within this study would be of much use to improve and validate algorithms or models for extracting spectral properties of understory from remote sensing data. It can be also further used as a valuable input in radiative transfer simulations that are used to quantify the roles of forest tree layer and understory components in forming a seasonal reflectance course of a hemi-boreal forest, and the upcoming phases of the RAdiation Model Intercomparison (RAMI) experiment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号