首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6215篇
  免费   1839篇
  国内免费   2366篇
测绘学   290篇
大气科学   4507篇
地球物理   1653篇
地质学   1777篇
海洋学   725篇
天文学   131篇
综合类   328篇
自然地理   1009篇
  2024年   99篇
  2023年   206篇
  2022年   285篇
  2021年   349篇
  2020年   371篇
  2019年   437篇
  2018年   320篇
  2017年   384篇
  2016年   355篇
  2015年   377篇
  2014年   478篇
  2013年   583篇
  2012年   508篇
  2011年   494篇
  2010年   403篇
  2009年   444篇
  2008年   407篇
  2007年   565篇
  2006年   467篇
  2005年   374篇
  2004年   314篇
  2003年   301篇
  2002年   242篇
  2001年   217篇
  2000年   205篇
  1999年   172篇
  1998年   157篇
  1997年   142篇
  1996年   142篇
  1995年   119篇
  1994年   117篇
  1993年   81篇
  1992年   72篇
  1991年   61篇
  1990年   32篇
  1989年   48篇
  1988年   30篇
  1987年   18篇
  1986年   9篇
  1985年   6篇
  1984年   4篇
  1983年   5篇
  1982年   4篇
  1981年   4篇
  1980年   6篇
  1978年   1篇
  1976年   1篇
  1954年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   
2.
In order to model non‐Fickian transport behaviour in groundwater aquifers, various forms of the time–space fractional advection–dispersion equation have been developed and used by several researchers in the last decade. The solute transport in groundwater aquifers in fractional time–space takes place by means of an underlying groundwater flow field. However, the governing equations for such groundwater flow in fractional time–space are yet to be developed in a comprehensive framework. In this study, a finite difference numerical scheme based on Caputo fractional derivative is proposed to investigate the properties of a newly developed time–space fractional governing equations of transient groundwater flow in confined aquifers in terms of the time–space fractional mass conservation equation and the time–space fractional water flux equation. Here, we apply these time–space fractional governing equations numerically to transient groundwater flow in a confined aquifer for different boundary conditions to explore their behaviour in modelling groundwater flow in fractional time–space. The numerical results demonstrate that the proposed time–space fractional governing equation for groundwater flow in confined aquifers may provide a new perspective on modelling groundwater flow and on interpreting the dynamics of groundwater level fluctuations. Additionally, the numerical results may imply that the newly derived fractional groundwater governing equation may help explain the observed heavy‐tailed solute transport behaviour in groundwater flow by incorporating nonlocal or long‐range dependence of the underlying groundwater flow field.  相似文献   
3.
This paper presents a numerical model for predicting the dynamic response of rock mass subjected to large‐scale underground explosion. The model is calibrated against data obtained from large‐scale field tests. The Hugoniot equation of state for rock mass is adopted to calculate the pressure as a function of mass density. A piecewise linear Drucker–Prager strength criterion including the strain rate effect is employed to model the rock mass behaviour subjected to blast loading. A double scalar damage model accounting for both the compression and tension damage is introduced to simulate the damage zone around the charge chamber caused by blast loading. The model is incorporated into Autodyn3D through its user subroutines. The numerical model is then used to predict the dynamic response of rock mass, in terms of the peak particle velocity (PPV) and peak particle acceleration (PPA) attenuation laws, the damage zone, the particle velocity time histories and their frequency contents for large‐scale underground explosion tests. The computed results are found in good agreement with the field measured data; hence, the proposed model is proven to be adequate for simulating the dynamic response of rock mass subjected to large‐scale underground explosion. Extended numerical analyses indicate that, apart from the charge loading density, the stress wave intensity is also affected, but to a lesser extent, by the charge weight and the charge chamber geometry for large‐scale underground explosions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
4.
5.
Infiltration experiments have been performed at three sites along a well-known catena under virgin tropical rain forest using a portable sprinkling infiltrometer. Experimentally determined infiltration curves are presented. Infiltration curves are also simulated on the basis of the Mein-Larson equation. The parameters for this model have been obtained from the infiltration curves (saturated conductivity) and simple soil moisture determinations (fillable porosity). The agreement between experimentally determined and modelled infiltration is reasonable, provided (a) saturated conductivity as derived from the experimental data is corrected, (b) a storage parameter, also derived from the experimental data, is added to the Mein-Larson model, and (c) the decline in soil porosity with depth is either small or occurs abruptly at shallow depth. Comparison of observed infiltration rates with rainfall intensity shows that Horton Overland Flow has to occur naturally at least on the middle and lower section of the catena. Despite the fact that most parameters can be estimated in principle from basic soil data, it remains advisable to obtain sprinkling infiltrometer field measurements, because of soil variability due to dynamic surface conditions, macroporosity, air entrapment, and irregularity of the wetting front.  相似文献   
6.
This paper presents a new contact calculating algorithm for contacts between two polyhedra with planar boundaries in the three-dimensional discontinuous deformation analysis (3-D DDA). In this algorithm, all six type contacts in 3-D (vertex-to-face, vertex-to-edge, vertex-to-vertex, face-to-face, edge-to-edge, and edge-to-face) are simply transformed into the form of point-to-face contacts. The presented algorithm is a simple and efficient method and it can be easily coded into a computer program. In this paper, formulations of normal contact, shear contact and frictional force submatrices based on the new method are derived and the algorithm has been programmed in VC++. Examples are provided to demonstrate the new contact rule between two blocks.  相似文献   
7.
作者研究三维变系数抛物方程 Douglas交替方向隐格式的稳定性和收敛性。采用 H1能量估计方法 ,证明格式按离散 H1范数是绝对稳定的 ,并且收敛阶为 O(Δ t2 + h2 )  相似文献   
8.
本文从辐射方程出发,简述洋面温度与亮度温度之间的非线性关系,进行非线性洋面温度反演的方案设计,用正演算法 计算出非线性洋面温度反演公式的回归系数,对样进行检验。  相似文献   
9.
We develop techniques of numerical wave generation in the time-dependent extended mild-slope equations of Suh et al. [1997. Time-dependent equations for wave propagation on rapidly varying topography. Coastal Engineering 32, 91–117] and Lee et al. [2003. Extended mild-slope equation for random waves. Coastal Engineering 48, 277–287] for random waves using a source function method. Numerical results for both regular and irregular waves in one and two horizontal dimensions show that the wave heights and the frequency spectra are properly reproduced. The waves that pass through the wave generation region do not cause any numerical disturbances, showing usefulness of the source function method in avoiding re-reflection problems at the offshore boundary.  相似文献   
10.
P. Bonneton   《Ocean Engineering》2007,34(10):1459-1471
In this paper, we analyse the ability of the nonlinear shallow-water (NSW) equations to predict wave distortion and energy dissipation of periodic broken waves in the inner surf zone. This analysis is based on the weak-solution theory for conservative equations. We derive a new one-way model, which applies to the transformation of non-reflective periodic broken waves on gently sloping beaches. This model can be useful to develop breaking-wave parameterizations (in particular broken-wave celerity expression) in both time-averaged wave models and time-dependent Boussinesq-type models. We also derive a new wave set-up equation which provides a simple and explicit relation between wave set-up and energy dissipation. Finally, we compare numerical simulations of both, the NSW model and the simplified one-way model, with spilling wave breaking experiments and we find a good agreement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号