首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  国内免费   1篇
测绘学   4篇
大气科学   1篇
地球物理   1篇
海洋学   1篇
  2020年   1篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2004年   1篇
  2002年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
Profiles observed by Sea-Wing underwater gliders are widely applied in scientific research. However, the quality control(QC) of these data has received little attention. The mismatch between the temperature probe and conductivity cell response times generates erroneous salinities, especially across a strong thermocline. A sensor drift may occur owing to biofouling and biocide leakage into the conductivity cell when a glider has operated for several months. It is therefore critical to design a mature real-time QC procedure and develop a toolbox for the QC of Sea-Wing glider data. On the basis of temperature and salinity profiles observed by several Sea-Wing gliders each installed with a Sea-Bird Glider Payload CTD sensor, a real-time QC method including a thermal lag correction, Argo-equivalent real-time QC tests, and a simple post-processing procedure is proposed. The method can also be adopted for Petrel gliders.  相似文献   
2.
COSMIC及其在气象领域的应用   总被引:3,自引:3,他引:3       下载免费PDF全文
COSMIC是利用现代遥感技术、通信技术和计算机技术解决当今地球科学重大问题的地球科学卫星探测系统。作为GPS/MET的后续计划,主要是为了进行气象与气候研究、气候监测、太空天气和大地测量等研究。COSMIC计划于2003年之前发射8颗低轨卫星,8颗卫星每天可进行4000次GPS观测。本文介绍COSMIC系统组成及COSMIC数据应用。  相似文献   
3.
This article provides a survey on modern methods of regional gravity field modeling on the sphere. Starting with the classical theory of spherical harmonics, we outline the transition towards space-localizing methods such as spherical splines and wavelets. Special emphasis is given to the relations among these methods, which all involve radial base functions. Moreover, we provide extensive applications of these methods and numerical results from real space-borne data of recent satellite gravity missions, namely the Challenging Minisatellite Payload (CHAMP) and the Gravity Recovery and Climate Experiment (GRACE). We also derive high-resolution gravity field models by effectively combining space-borne and surface measurements using a new weighted level-combination concept. In addition, we outline and apply a strategy for constructing spatio-temporal fields from regional data sets spanning different observation periods.  相似文献   
4.
Satellite data that are used to model the global gravity field of the Earth are typically corrupted by correlated noise, which can be related to a frequency dependence of the data accuracy. We show an opportunity to take such noise into account by using a proper noise covariance matrix in the estimation procedure. If the dependence of noise on frequency is not known a priori, it can be estimated on the basis of a posteriori residuals. The methodology can be applied to data with gaps. Non-stationarity of noise can also be dealt with, provided that the necessary a priori information exists. The proposed methodology is illustrated with CHAllenging Mini-satellite Payload (CHAMP) data processing. It is shown, in particular, that the usage of a proper noise model can make the measurements of non-gravitational satellite accelerations unnecessarily. This opens the door for high-quality modeling of the Earth’s gravity field on the basis of observed orbits of non-dedicated satellites (i.e., satellites without an on-board accelerometer). Furthermore, the processing of data from dedicated satellite missions – GRACE (Gravity Recovery and Climate Experiment) and GOCE (Gravity field and steady-state Ocean Circulation Explorer) – may also benefit from the proposed methodology.  相似文献   
5.
Wide image swath with a high geometric resolution is required for photogrammetric applications. Both demands can be satisfied using staggered line arrays. Different bands of IRS-P6 LISS-4 sensor use staggered arrays for imaging. This paper describes a method for computing the offset for geometric alignment of odd and even lines of the staggered array of IRS-P6 LISS-4 imagery. The odd and even pixel rows are separated by 35 μm (equal to 5 pixels) in the focal plane in the along-track direction. Slightly different viewing angles of both lines of a staggered array can result in a variable sampling pattern on the ground because of the attitude fluctuations, satellite movement, terrain topography, PSM steering and small variations in the angular placement of the CCD lines (from the pre-launch values) in the focal plane. Non-accounting of this variable sampling value during the video data alignment will introduce deterioration of image quality and geometric discontinuity of features. The stagger parameters can be computed by the reconstruction of the viewing geometry with a calibrated camera geometry model and a public domain DEM. The impact of the line separation in the focal plane during imaging for different viewing configurations and terrain heights are studied and reported in this paper. Computed values from the model are in good agreement with what is observed in the raw image for different view angles. The results verify the model and are representative of the stability of the platform.  相似文献   
6.
简单介绍了法国DEMETER(detectionofelectro—magneticemissionstransmittedfromearthquakeregions)地震电磁卫星的科学任务,以及所搭载载荷和观测模式。利用卫星观测资料研究了2006年6月20日16点52分(UT时间)发生在我国甘肃境内的5.0级地震。结果发现,在此次震前第5天电离层就开始出现异常现象,在震前大约1~2天时,这种异常达到最大。最后简述了发展卫星观测所面临的挑战和机遇。  相似文献   
7.
Integrated adjustment of CHAMP, GRACE, and GPS data   总被引:16,自引:3,他引:13  
Various types of observations, such as space-borne Global positioning system (GPS) code and phase data, accelerometer data, K-band range and range-rate data, and ground-based satellite laser ranging data of the CHAllenging Minisatellite Payload (CHAMP) and GRAvity Climate Experiment (GRACE) satellite missions, are used together with ground-based GPS code and phase data in a rigorous adjustment to eventually solve for the ephemerides of the CHAMP, GRACE, and GPS satellites, geocenter variations, and low-degree gravity field parameters. It turns out that this integrated adjustment considerably improves the accuracy of the ephemerides for the high and low satellites, geocenter variations, and gravity field parameters, compared to the case when the adjustment is carried out stepwise or in individual satellite solutions.Acknowledgments. This study has been supported by the German Ministry of Education and Research through the Geotechnologies Programme grants 03F0333A/CHAMP and 03F0326A/GRACE.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号