首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   1篇
大气科学   44篇
地球物理   1篇
  2009年   3篇
  2008年   4篇
  2007年   4篇
  2006年   3篇
  2005年   5篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   5篇
  1999年   7篇
  1998年   4篇
  1995年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
1.
Townsend's hypothesis states that turbulence near a wall can be divided into an activepart that transports momentum, and an inactive part that does not, and that these twokinds of turbulence do not interact. Active turbulence is generated by wind shear and has properties that scale on local parameters of the flow, while inactive turbulence isthe product of energetic processes remote from the surface and scales on outer-layerparameters. Both kinds of motion can be observed in the atmospheric surface layer, soMonin–Obukhov similarity theory, which is framed in terms of local parameters only,can apply only to active motions. If Townsend's hypothesis were wrong, so that activeand inactive motions do interact in some significant way, then transport processes nearthe ground would be sensitive to outer-layer parameters such as boundary-layer depth,and Monin–Obukhov theory would fail.Experimental results have shown that heat transport near the ground does depend onprocesses in the outer layer. We propose a mechanism for this whereby inactive motionsinitiate active, coherent ejection/sweep structures that carry much of the momentum andheat. We give evidence that the inactive motions take the form of streak patterns of fasterand slower air, and argue that these are induced by the pressure effects of large eddiespassing overhead. The streak pattern includes regions where faster streams of air overtakeand engulf slower-moving streaks. Transverse vortices form across the spines of the streaksat these places and some of them develop into horseshoe vortices. These horseshoe vorticesgrow rapidly and are rotated forward in the sheared flow so they soon contact the ground,squirting the air confined between the legs of the horseshoe vortex outwards as a forcefulejection. This model is consistent with a wide range of results from the field and laboratoryexperiments. Heat transport is significantly affected, so undermining the dimensionalassumptions of Monin–Obukhov similarity theory.  相似文献   
2.
This paper examines the effect of non-stationarity of the wind on similarity of the eddy diffusivities for heat and vapour within a stable layer at the bottom of an internal boundary layer formed downwind of a dry-to-wet transition. First, we present some experimental data taken above a rice crop downwind of very extensive dry range lands at Warrawidgee, NSW, Australia. These data establish that periods of higher wind speed were associated with periods of higher saturation deficit in the canopy of the rice crop, and lower Bowen ratio. It is shown that Bowen ratios calculated for 30-second sub-intervals varied three-fold within a single 20-minute averaging period. Thus periods of higher wind speed corresponded to periods of higher moisture flux and smaller sensible heat flux.An idealized situation is then analysed theoretically. It is assumed that the time scale of the slow variations of the wind is long compared with the surface-layer time scale and that fetch is sufficient that the air near the ground is in continuous equilibrium with the surface. Using a two-scale Reynolds decomposition of the fluctuating wind and scalar variables into active and inactive components, it is shown that unsteadiness can lead to an eddy diffusivity for saturation deficit, calculated as the ratio of average flux to average gradient, that is larger than that for total energy calculated in a similar way. Using this ratio to calculate the ratio of diffusivities for temperature and humidity, KT/Kq, it is found that the latter can be much larger than one if the Bowen ratio is small and negative. Despite this, assuming KT = Kq and using the Bowen ratio method to calculate surface energy fluxes will usually incur only minor errors.  相似文献   
3.
Surface-Layer Fluxes in Stable Conditions   总被引:2,自引:2,他引:0  
Micrometeorological tower data from the Microfronts experiment are analyzed. Scale-dependencies of the flux and flux sampling error are combined to automatically determine Reynolds turbulence cut-off time scales for computing fluxes from time series. The computed downward heat flux at the 3 m height averaged over nine nights with 7.3 hours each night is 20% greater than the downward heat flux computed at the 10 m height. In contrast, there is only a 1.2% difference between 3 m and 10 m heat fluxes averaged over daytime periods, and there is less than a 2% difference between 3 m and 10 m momentum fluxes whether averaged over nighttime or daytime periods.Stability functions, M(z/L) and H(z/L) are extended to z/L up to 10, where z is the observational height and L is the Obukhov length. For 0.01 < z/L < 1 the estimated functions generally agree with Businger-Dyer formulations, though the H estimates include more scatter compared to the M estimates. For 1 < z/L < 10, the flux intermittency increases, the flux Richardson number exceeds 0.2, and the number of flux samples decreases. Nonetheless the estimates of the stability function M based on 3-m fluxes are closer to the formula proposed by Beljaars and Holtslag in 1991 while the M functions based on 10-m fluxes appears to be closer to the formula proposed by Businger et al. in 1971. The stability function H levels off at z/L = 0.5.  相似文献   
4.
5.
Measurements of atmospheric turbulence made during the Surface Heat Budget of the Arctic Ocean Experiment (SHEBA) are used to examine the profile stability functions of momentum, φ m , and sensible heat, φ h , in the stably stratified boundary layer over the Arctic pack ice. Turbulent fluxes and mean meteorological data that cover different surface conditions and a wide range of stability conditions were continuously measured and reported hourly at five levels on a 20-m main tower for 11 months. The comprehensive dataset collected during SHEBA allows studying φ m and φ h in detail and includes ample data for the very stable case. New parameterizations for φ m (ζ) and φ h (ζ) in stable conditions are proposed to describe the SHEBA data; these cover the entire range of the stability parameter ζ = z/L from neutral to very stable conditions, where L is the Obukhov length and z is the measurement height. In the limit of very strong stability, φ m follows a ζ 1/3 dependence, whereas φ h initially increases with increasing ζ, reaches a maximum at ζ ≈ 10, and then tends to level off with increasing ζ. The effects of self-correlation, which occur in plots of φ m and φ h versus ζ, are reduced by using an independent bin-averaging method instead of conventional averaging.  相似文献   
6.
In this study, profile functions for flux calculations during unstable conditions are proposed and examined. These functions are based on a direct interpolation for the dimensionless wind speed and temperature gradients between the standard Businger–Dyer formulae, , , and free convection forms, , being the Monin–Obukhov stability parameter. A previously presented interpolation between the corresponding profile relationships, in attempting to provide a general relationship for the whole unstable regime, leads to serious restrictions for the values of in the free convection forms. These restrictions rendered available experimental data almost inapplicable, since the behaviour of the formulae in the near-neutral range controls the values of those parameters. The proposed interpolation provides functions that, firstly, fit the standard Businger–Dyer forms for near-neutral conditions and, secondly, satisfy the asymptotic behaviour as , permitting wider ranges of possible values. This step is very important, taking into account the large spread of the experimental data. Thus, as further and more accurate observations at strong instability become available, this approach could prove very efficient in fitting these data while retaining correct near-neutral behaviour.  相似文献   
7.
Atmospheric measurements from several field experiments have been combined to develop a better understanding of the turbulence structure of the stable atmospheric boundary layer. Fast response wind velocity and temperature data have been recorded using 3-dimensional sonic anemometers, placed at severalheights (1 m to 4.3 m) above the ground. The measurements wereused to calculate the standard deviations of the three components of the windvelocity, temperature, turbulent kinetic energy (TKE) dissipation andtemperature variance dissipation. These data were normalized and plottedaccording to Monin–Obukhov similarity theory. The non-dimensional turbulencestatistics have been computed, in part, to investigate the generalapplicability of the concept of z-less stratification for stable conditions. From the analysis of a data set covering almost five orders ofmagnitude in the stability parameter = z/L (from near-neutral tovery stable atmospheric stability), it was found that this concept does nothold in general. It was only for the non-dimensional standard deviation oftemperature and the average dissipation rate of turbulent kinetic energythat z-less behaviour has been found. The other variables studied here(non-dimensional standard deviations of u, v, and w velocity components and dissipation of temperature variance) did not follow the concept of z-less stratification for the very stable atmospheric boundary layer. An imbalance between production and dissipation of TKE was found for the near-neutral limit approached from the stable regime, which matches with previous results for near-neutral stability approached from the unstable regime.  相似文献   
8.
An approximate method for calculating the relationship between z/L(z = reference height, L = Obukhov length) and the bulk Richardsonnumber is presented. If this relationship is known, the momentum andheat fluxes can be computed easily without any iteration. The avoidance of iteration can speed up computationsin large-scale models considerably (up to 10 times) and cases which do not converge or converge very slowly cannot occur. The proposed formulae take into account the difference between momentum (z0M) and heat roughnesslengths (z0H). Because the roughness lengths are not neglected at any step of the derivation, the resulting analytical formulae can be used not only between the surface and the reference height but also between two finite levels z1 andz2 (by replacing z0M and z0H by z1 and z by z2). Theequations remain correct even in the limit z1 z2.The formulae are based upon the (partially modified) Businger–Dyer flux–profile relationships and,consequently, they are restricted to predominantly homogeneous terrain.These new approximations are an improvement over the existing solutions because they are simpler than most of the formulae in the literature and are able to match the numerical exact solution for different parameter sets (Businger, Dyer, Högström) with an maximum error of about 2% for a wide range of z/L, z/z0M and z0M/z0H.Furthermore, in stable conditions, schemes with and without a finitecritical bulk Richardson number can be approximated. The possibleambiguity of the exact solution =f(RIB) in (moderately) stable conditions is discussed briefly. The performance of the new formulae is compared to the exact numerical solution and to different formulae proposed in the literature.  相似文献   
9.
Simple analytic approximate solutions arepresented for the set of equations that follows fromthe Monin–Obukhov flux-profile relationships using thestability functions of Dyer (unstable case) andBeljaars–Holtslag (stable case). Several publicationsare devoted to the same subject, however the currentapproach contains some new features, namely: (a) itappears to be more accurate for unstable situationsand (b) it applies also to the general case where windspeed (u) and potential temperature() are given at different levels. In order toillustrate the accuracy of the approach a comparisonwith the actual solutions is presented for someselected combinations of and u levelstypical for various practical applications.  相似文献   
10.
We address some of the methodological challenges associated with the measurement of turbulence and use of scintillometers in the urban roughness sublayer (RSL). Two small-aperture scintillometers were located near the roof interface in a densely urbanized part of Basel, Switzerland, as part of the Basel Urban Boundary-Layer Experiment (BUBBLE) in the summer of 2002. Eddy correlation instruments were co-located near the mid-point of each scintillometer path for data verification purposes. The study presents the first values of the inner length scale of turbulence (l 0) and the refractive index structure parameter of air for a city and demonstrates the influence of mechanical driven turbulence on dissipation. Comparison of dissipation values determined from the two approaches show large scatter that is possibly due to the spatial inhomogeneity of the turbulence statistics within the RSL. Velocity and temperature spectra display a −2/3 slope in the inertial subrange, although the spectral ratio is less than the theoretical prediction of 4/3 expected for isotropy. Conventional Monin–Obukhov equations used to calculate fluxes from the scintillometer were replaced with urban forms of the equations. The results suggest that the scintillometer may be an appropriate tool for the measurement of sensible heat flux (Q H ) above the rooftops given a suitable determination of the effective measurement height.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号