首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   814篇
  免费   149篇
  国内免费   241篇
测绘学   17篇
大气科学   452篇
地球物理   234篇
地质学   189篇
海洋学   153篇
天文学   6篇
综合类   40篇
自然地理   113篇
  2024年   9篇
  2023年   11篇
  2022年   28篇
  2021年   32篇
  2020年   25篇
  2019年   33篇
  2018年   28篇
  2017年   43篇
  2016年   29篇
  2015年   39篇
  2014年   53篇
  2013年   63篇
  2012年   59篇
  2011年   43篇
  2010年   46篇
  2009年   55篇
  2008年   66篇
  2007年   77篇
  2006年   63篇
  2005年   49篇
  2004年   31篇
  2003年   34篇
  2002年   40篇
  2001年   27篇
  2000年   28篇
  1999年   27篇
  1998年   25篇
  1997年   23篇
  1996年   21篇
  1995年   6篇
  1994年   21篇
  1993年   8篇
  1992年   15篇
  1991年   6篇
  1990年   6篇
  1989年   3篇
  1988年   7篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   4篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
排序方式: 共有1204条查询结果,搜索用时 15 毫秒
1.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   
2.
Starting with analysis on the evolving course of oasis and the characteristics and evolution of transitional zone between oasis and desert, in consideration of ecological elements including plant stomata resistance, area covered by vegetation, and physical elements including albedo of vegetation and bare soil, atmosphere temperature, and humidity, under the condition of the balance among net radiation flux, latent heat flux, and sensible heat flux, the following are calculated: temperatures of vegetation and bare soil in different conditions, as well as the evapotranspiration rate of ecosystem. Analysis on evapotranspiration rate indicates that it depends on both the climate of environment and the physiological and ecological conditions of plants. On certain conditions, the evapotranspiration rate of transitional zone between oasis and desert (i.e. area covered by vegetation less than 20%), in some parameter domains, appears in bifurcation or multiequilibrium state. Meanwhile, in such area, ecosystem is extremely unstable. Any minor change to the balance will cause either increase or reduction of area covered by vegetation in ecosystem, on the basis of discussion on the emergency of these phenomena. This paper is attempting to propose an effective way of destruction and rebuilt ecosystem in transitional zone. The way is to control the evaporation of plant through selecting anti-drought country plant with big stomata resistance, and modify the roughness of the underlying surface in ecosystem by establishing rational interspace structure of plant community, so as to put the degenerative ecosystem into the natural succession track. This primary theory is being verified through observation and analysis on historical data.  相似文献   
3.
摄食水平和性别对稀有鮈鲫生长和能量收支的影响   总被引:7,自引:0,他引:7  
于1995年10月采集本所自繁有ju鲫(约1.03g/ind),在30℃水温下进行摄食-生长实验,研究了从饥饿到饱食5个摄食水平对不同性别稀有ju鲫的生长和能量收支的影响,结果表明,鱼体干物和能量含量不受摄食率和性别的影响,随着摄食率的增加,雌鱼的湿重,干重和能量特定生长率均呈双对数增加,雄鱼湿重特定生长率呈双对数增加,而干物质和能量特定生长率呈指增加,雄鱼生长速度及摄食率低于雌鱼,随着摄食率的增加,食物能损失于粪便中的比例均呈上升趋势,损失于排泄物中的比例变化不大,呈下降趋势,用于代谢的比例呈下降趋势,用于生长的比例呈上升趋势,除饥饿组外,在各个摄食水平,雌鱼食物能用于代谢的比例较雄鱼低,而用于生长的比例较雄鱼高。  相似文献   
4.
呼伦湖的近期扩张及其与全球气候变化的关系   总被引:10,自引:0,他引:10  
通过近20多年湖泊水量平衡分析发现,湖泊水位变化主要由湖盆内径流补给量的丰枯决定。进一步分析揭示,呼伦湖地区乃至整个东北地区,本世纪以来随气温升高,随水有增加的趋势。降水增加导致入湖径流量,湖水位上升,呼伦湖本世纪以来的扩张与内蒙古东部地区其他内陆湖泊的变化一致,但这在我国乃至整个亚洲内陆干旱或半干旱区是独一无二的,为此成为这一地区气候变化的指示器。  相似文献   
5.
With the development of high-resolution multibeam echosounder systems (MBES) for surveying shallow-water areas a new tool is available to monitor rapid changes in seabed morphology as, e.g., caused by the dumping of dredge spoil in coastal waters. In this study, four data sets of repeated bathymetric surveys with a MBES were processed and analyzed. The data were collected in a 1.94-km2 dumping site in the outer Weser Estuary (German Bight). Between June and December 1998, 2.6 million m3 of dredged sediment were deposited there. The bathymetric maps generated in the course of this study reveal features such as subaqueous dunes, scour holes, and mounds of dumped dredge spoil. The mean water depth decreased by about 1 m during the dumping period. Furthermore, difference grids showing changes in sediment volume allowed a calculation of the sediment budget for the monitored area. After a time period of only 5 months, 0.5 million m3 of the originally dumped 2.6 million m3 of dredge spoil had already been removed from the dumping site.  相似文献   
6.
A finite-difference quasigeostrophic (QG) model of an open ocean region has been employed to produce a dynamically constrained synthesis of acoustic tomography and satellite altimetry data with in situ observations. The assimilation algorithm is based upon the 4D variational data interpolation scheme controlled by the model's initial and boundary conditions. The data sets analyzed include direct and differential travel times measured at the array of five acoustic transceivers deployed by JAMSTEC in the region of the Kuroshio Extension in 1997, Topex/Poseidon altimetry, CTD soundings, and ADCP velocity profiles. The region monitored is located within the area 27.5°–36.5°N, 143°–155°. The results of assimilation show that mesoscale variability can be effectively reconstructed by five transceivers measuring direct and reciprocal travel times supported by relatively sparse in situ measurements. The misfits between model and data lie within the observational error bars for all the data types used in assimilation. We have compared the results of assimilation with the statistical inversion of travel time data and analyzed energy balances of the optimized model solution. Energy exchange between the depth-averaged and shear components of the observed currents reveals a weak decay of the barotropic mode at the rate of 0.2 ± 0.7⋅10−5 cm2/s3 due to topographic interaction. Mean currents in the region are unstable with an estimate of the available potential energy flux from the mean current to the eddies of 4.7 ± 2.3⋅10−5 cm2/s3. Kinetic energy transition has the same sign and is estimated as 2.8 ± 2.5⋅10−5 cm2/s3. Potential enstrophy is transferred to the mesoscale at a rate of 5.5 ± 2.7⋅10−18 s−3. These figures provide observational evidence of the properties of free geostrophic turbulence which were predicted by theory and observed in numerical experiments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
7.
The results obtained from an Ocean General Circulation Model (OGCM), the Modular Ocean Model 2.2, forced with the National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis data, and observational data have been utilized to document the climatological seasonal cycle of the upper ocean response in the Tropical Indian Ocean. We address the various roles played by the net surface heat flux and the local and remote ocean dynamics for the seasonal variation of near-surface heat budget in the Tropical Indian Ocean. The investigation is based in seven selected boxes in the Arabian Sea, Bay of Bengal and the Equatorial Indian Ocean. The changes of basin-wide heat budget of ocean process in the Arabian Sea and the Western Equatorial Indian Ocean show an annual cycle, whereas those in the Bay of Bengal and the Eastern Equatorial Indian Ocean show a semi-annual cycle. The time tendency of heat budget in the Arabian Sea depends on both the net surface heat flux and ocean dynamics while on the other hand, that in the Bay of Bengal depends mainly on the net surface flux. However, it has been found that the changes of heat budget are very different between western and eastern regional sea areas in the Arabian Sea and the Bay of Bengal, respectively. This difference depends on seasonal variations of the different local wind forcing and the different ocean dynamics associated with ocean eddies and Kelvin and Rossby waves in each regional sea areas. We also discuss the comparison and the connection for the seasonal variation of near-surface heat budget among their regional sea areas. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
8.
林峰  许清辉 《台湾海峡》1990,9(3):251-255
利用潮输沙量的计算方法,估算了闽江口入海口内3个断面所包围区域溶解态镉、铅和铜的收支平衡,从而研究了这些重金属的河口行为。  相似文献   
9.
利用1974~1982年黄、东海海洋水文气象标准断面实测资料对近海面空气湿度的分布、变化进行了分析。讨论了冬、夏季海、气温与湿度的关系,并对冬、夏季近海面空气湿度进行了估算。结果表明,夏季,空气湿度为气温的函数;冬季,除了考虑空气本身平流的水汽外,还必须考虑海洋向大气的水汽输送。  相似文献   
10.
The properties of salinity in the South China Sea (SCS), a significant marginal sea connecting the Pacific andIndian Oceans, are greatly influenced by the transport of fresh water flux between the two oceans. However, the long-termchanges in the intermediate water in the SCS have not been thoroughly studied due to limited data, particularly in relationto its thermodynamic variations. This study utilized reanalysis data products to identify a 60-year trend of freshening in theintermediate waters of the northern South China Sea (NSCS), accompanied by an expansion of low-salinity water. Thestudy also constructed salinity budget terms, including advection and entrainment processes, and conducted an analysis ofthe salinity budget to understand the impacts of external and internal dynamic processes on the freshening trend of theintermediate water in the NSCS. The analysis revealed that the freshening in the northwest Pacific Ocean and theintensification of intrusion through the Luzon Strait at intermediate levels are the primary drivers of the salinity changes inthe NSCS. Additionally, a weakened trend in the intensity of vertical entrainment also contributes to the freshening in theNSCS. This study offers new insights into the understanding of regional deep sea changes in response to variations in boththermodynamics and oceanic dynamic processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号