首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   1篇
大气科学   1篇
地球物理   2篇
  2016年   3篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
A high resolution atmospheric modelling study was done for a 20-year recent historical period. The dynamic downscaling approach adopted used the Max Planck Institute Earth System Model (MPI-ESM) to drive the WRF running in climate mode. Three online nested domains were used covering part of the North Atlantic and Europe, with a resolution 81 km, and reaching 9 km in the innermost domain which covers the Iberian Peninsula.This paper presents the validation of the WRF configuration, which is based on historic simulations between 1986 and 2005 and observational datasets of near surface temperature and precipitation for the same period. The validation was done in terms of comparison of probability distributions between model results and observations, as daily climatologies, spatially averaged inside subdomains obtained with cluster analysis of the observations, for each of the four seasons. In addition, Taylor diagrams are presented for each of the seasons and subdomains. This validation approach was repeated with the results of a new WRF simulation with the same parameterisations but forced by the ERA-Interim reanalysis. The capacity of the MPI-ESM driven WRF configuration to compare with observations and in a manner similar to the ERA-Interim driven WRF, ensures the capacity of the configuration for climate and climate change studies.Considering the difficulty to simulate extremes in long term simulations, the results showed a comfortable comparison of both models (forced by climate model and reanalysis results) with observations. This provides us confidence on the continuity of using the MPI-ESM driven WRF configuration for climate studies.  相似文献   
2.
Spatial and temporal distributions of the trends of extreme precipitation indices were analysed between 1986 and 2005, over the Iberian Peninsula (IP). The knowledge of the patterns of extreme precipitation is important for impacts assessment, development of adaptation and mitigation strategies. As such, there is a growing need for a more detailed knowledge of precipitation climate change.This analysis was performed for Portuguese and Spanish observational datasets and results performed by the Weather Research and Forecast (WRF) model forced by the ERA-Interim reanalysis. Extreme precipitation indices recommended by the Expert Team for Climate Change Detection Monitoring and Indices were computed, by year and season. Then, annual and seasonal trends of the indices were estimated by Theil-Sen method and their significance was tested by the Mann-Kendal test. Additionally, a second simulation forced by the Max Planck Institute Earth System Model (MPI-ESM), was considered. This second modelling configuration was created in order to assess its performance when simulating extremes of precipitation.The annual trends estimated for the 1986–2005, from the observational datasets and from the ERA-driven simulation reveal: 1) negative statistically significant trends of the CWD index in the Galicia and in the centre of the IP; 2) positive statistically significant trends of the CDD index over the south of the IP and negative statistically significant trends in Galicia, north and centre of Portugal; 3) positive statistically significant trends of the R75p index in some regions of the north of the IP; 4) positive statistically significant trends in the R95pTOT index in the Central Mountains Chain, Leon Mountains and in the north of Portugal.Seasonally, negative statistically significant trends of the CWD index were found in Galicia, in winter and in the south of the IP, in summer. Positive statistically significant trends of the CWD index were identified in the Leon Mountains, in spring, and in Galicia, in autumn. For the CDD index, negative statistically significant trends were seen in Valencia, in the spring, and, in Galicia and Portugal (north and centre), in summer. Positive statistically significant trends of the CDD index were found: in the east of the IP, in the winter; in the Cantabrian Mountain, in the spring; and, in the south of the IP, in summer. Regarding to the R75p index, negative statistically significant trends were found in Galicia, in winter and positive statistically significant trends in the north of Portugal, in spring and in the Central Mountains Chain and north of Portugal, in autumn. For the R95pTOT index, negative statistically significant trends were found over the Sierra Cuenca and Sierra Cazorla, in winter and positive statistically significant trends were found over the Sierra Cebollera, in winter and in Castile-la Mancha region, in spring.The results of the annual and seasonal trends of the extreme precipitation indices performed for observational datasets and the simulation forced by ERA-Interim, are similar. The results obtained for the simulation forced by MPI-ESM are not satisfactory, and can be a source of criticism for the use of simulation forced by MPI-ESM in this type of climate change studies. Even for the relatively short period used, the WRF model, when properly forced is a useful tool due to the similar results of Portuguese and Spanish observational datasets and the simulation forced by ERA-Interim.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号