首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   2篇
  国内免费   1篇
大气科学   1篇
地球物理   3篇
地质学   22篇
自然地理   3篇
  2022年   1篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2008年   5篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2002年   2篇
  2001年   1篇
  1996年   1篇
  1989年   1篇
  1983年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
An increasingly utilized strategy for expanding conservation in the developing world has been the promotion of protected areas that supersede national borders. Alternatively known as transfrontier biosphere reserves, transfrontier or transboundary conservation areas, or Peace Parks, these protected areas are aggressively advanced by conservation agencies for their purported ecological and economic benefits. This article provides a comparative assessment of two case studies to understand the various impacts of transboundary conservation. The Great Limpopo Transfrontier Park, which unites protected areas in South Africa, Mozambique and Zimbabwe, is contrasted with efforts to protect jaguars along the United States–Mexico border. We argue that while these cases are promising for the purposes of biodiversity protection, they demonstrate that transboundary conservation can minimize political context, contributes to the hegemony of international conservation agendas, and remains closely linked to economic neoliberalism and decentralization in the developing world.
Brian KingEmail:
  相似文献   
2.
3.
Differentiation of the continental crust is the result of complex interactions between a large number of processes, which govern partial melting of the deep crust, magma formation and segregation, and magma ascent to significantly higher crustal levels. The anatectic metasedimentary rocks exposed in the Southern Marginal Zone of the Limpopo Belt represent an unusually well‐exposed natural laboratory where the portion of these processes that operate in the deep crust can be directly investigated in the field. The formation of these migmatites occurred via absent incongruent melting reactions involving biotite, which produced cm‐ to m‐scale, K2O‐poor garnet‐bearing stromatic leucosomes, with high Ca/Na ratios relative to their source rocks. Field investigation combined with geochemical analyses, and phase equilibrium modelling designed to investigate some aspects of disequilibrium partial melting show that the outcrop features and compositions of the leucosomes suggest several steps in their evolution: (1) Melting of a portion of the source, with restricted plagioclase availability due to kinetic controls, to produce a magma (melt + entrained peritectic minerals in variable proportions relative to melt); (2) Segregation of the magma at near peak metamorphic conditions into melt accumulation sites (MAS), also known as future leucosome; (3a) Re‐equilibration of the magma with a portion of the bounding mafic residuum via chemical diffusion (H2O, K2O), which triggers the co‐precipitation of quartz and plagioclase in the MAS; (3b) Extraction of melt‐dominated magma to higher crustal levels, leaving peritectic minerals entrained from the site of the melting reaction, and the minerals precipitated in the MASs to form the leucosome in the source. The key mechanism controlling this behaviour is the kinetically induced restriction of the amount of plagioclase available to the melting reaction. This results in elevated melt H2O and K2O and chemical potential gradient for these components across the leucosome/mafic residuum contact. The combination of all of these processes accurately explains the composition of the K2O‐poor leucosomes. These findings have important implications for our understanding of melt segregation in the lower crust and minimum melt residency time which, according to the chemical modelling, is <5 years. We demonstrate that in some migmatitic granulites, the leucosomes constitute a type of felsic refractory residuum, rather than evidence of failed magma extraction. This provides a new insight into the ways that source heterogeneity may control anatexis.  相似文献   
4.
The extent of the deposition and of the preservation of the Blouberg Formation and Waterberg Group was at least partially controlled by brittle reactivation along the Palala Shear Zone. The Palala Shear Zone in the Blouberg area (Northern Province, South Africa) is characterised by granulite-grade gneiss, and formed by sinistral transpressional collision between the Southern Marginal Zone (Kaapvaal Craton) and the Central Zone of the Limpopo Belt. The Limpopo collision is thought to have occurred either at 2.0 Ga or at 2.7 Ga with reactivation at 2.0 Ga. Deposition of the Blouberg Formation was characterised by syn-sedimentary tectonism, which is reflected by a sudden upward coarsening in sedimentary rocks, and by the presence of a strongly folded and thrusted lower member. Bedding orientations and slickenside lineation orientations suggest that vergence was towards the south, and such a tectonism can be inferred to have produced a highland area to the north, bound on the southern margin by the southern strand of the Melinda Fault. The presence of an inferred northerly upland area is supported by palaeocurrent directions and the preservational extent of the Setlaole and Makgabeng Formations of the Waterberg Group (post-Blouberg Formation). The extent and stratigraphy of the overlying Mogalakwena Formation suggests that these strata onlapped northwards over the denuding highlands. Younger Sibasa basalts of the Soutpansberg Group have been dated at ca. 1.85 Ga. Blouberg and Waterberg strata can therefore be interpreted as syn- and post-tectonic sedimentary rocks, respectively, following a ca. 2.0 reactivation event along the Palala Shear Zone. It is difficult to reconcile the succession of geological events at Blouberg with a ca. 2.0 Ga Limpopo orogeny, and thus sedimentary strata in the study area support a 2.7 Ga date for Limpopo collision, with syn-Blouberg tectonism relating to ca. 2.0 reactivation within the previously assembled Limpopo Belt.  相似文献   
5.
文章对博茨瓦纳铜镍硫化物矿床的研究成果进行了总结,概括了赛莱比-皮奎铜镍硫化物矿床的区域地质背景、岩石地层划分,较系统地分析了矿床的地质特征和矿床成因;认为铜镍硫化物矿床的成矿物质来源多样,并且矿床形成后经历了强烈的褶皱和剪切作用。  相似文献   
6.
Metapelites, migmatites and granites from the c. 2 Ga Mahalapye Complex have been studied for determining the PT–fluid influence on mineral assemblages and local equilibrium compositions in the rocks from the extreme southwestern part of the Central Zone of the Limpopo high‐grade terrane in Botswana. It was found that fluid infiltration played a leading role in the formation of the rocks. This conclusion is based on both well‐developed textures inferred to record metasomatic reactions, such as Bt ? And + Qtz + (K2O) and Bt ± Qtz ? Sil + Kfs + Ms ± Pl, and zonation of Ms | Bt + Qtz | And + Qtz and Grt | Crd | Pl | Kfs + Qtz reflecting a perfect mobility (Korzhinskii terminology) of some chemical components. The conclusion is also supported by the results of a fluid inclusion study. CO2 and H2O ( = 0.6) are the major components of the fluid. The fluid has been trapped synchronously along the retrograde PT path. The PT path was derived using mineral thermobarometry and a combination of mineral thermometry and fluid inclusion density data. The Mahalapye Complex experienced low‐pressure granulite facies metamorphism with a retrograde evolution from 770 °C and 5.5 kbar to 560 °C and 2 kbar, presumably at c. 2 Ga.  相似文献   
7.
L. Millonig  A. Zeh  A. Gerdes  R. Klemd 《Lithos》2008,103(3-4):333-351
The Bulai pluton represents a calc-alkaline magmatic complex of variable deformed charnockites, enderbites and granites, and contains xenoliths of highly deformed metamorphic country rocks. Petrological investigations show that these xenoliths underwent a high-grade metamorphic overprint at peak P–T conditions of 830–860 °C/8–9 kbar followed by a pressure–temperature decrease to 750 °C/5–6 kbar. This P–T path is inferred from the application of P–T pseudosections to six rock samples of distinct bulk composition: three metapelitic garnet–biotite–sillimanite–cordierite–plagioclase–(K-feldspar)–quartz gneisses, two charnoenderbitic garnet–orthopyroxene–biotite–K-feldspar–plagioclase–quartz gneisses and an enderbitic orthopyroxene–biotite–plagioclase–quartz gneiss. The petrological data show that the metapelitic and charnoenderbitic gneisses underwent uplift, cooling and deformation before they were intruded by the Bulai Granite. This relationship is supported by geochronological results obtained by in situ LA-ICP-MS age dating. U–Pb analyses of monazite enclosed in garnet of a charnoenderbite gneiss provide evidence for a high-grade structural-metamorphic–magmatic event at 2644 ± 8 Ma. This age is significantly older than an U–Pb zircon crystallisation age of 2612 ± 7 Ma previously obtained from the surrounding, late-tectonic Bulai Granite. The new dataset indicates that parts of the Limpopo's Central Zone were affected by a Neoarchaean high-grade metamorphic overprint, which was caused by magmatic heat transfer into the lower crust in a ‘dynamic regional contact metamorphic milieu’, which perhaps took place in a magmatic arc setting.  相似文献   
8.
Phase analysis in the model K2O-poor aluminous rock system (FMASH) illustrates the following sequence of reactions during retrograde metamorphism in the Botswanan Limpopo Central Zone:
Opx+Sil+Qtz=Crd ,
Opx+Sil=Spr+Crd ,
Grt+Qtz=Opx+Crd ;
Opx+Crd+W=Ged+Qtz ,
Grt+Opx+Crd+W=Ged ;
and
Grt+Qtz+W=Ged+Crd .
A quantitative petrogenetic grid with phase relations shows that sapphirine results from nearly isothermal decompression in the quartz-undersaturated portions of the grid, and that gedrite formation by reactions (4)–(6) records isobaric cooling from high temperature ( c . 800°  C) after the decompression. Conditions for hydration in the western part of the area were 700–800°  C and c . 6  kbar, based on microthermometric data and the available garnet–cordierite geothermometer. On the basis of these conditions and predicted thermodynamic properties of gedrite, phase relations in T–X Mg space were constructed to investigate the isobaric cooling event. The results are in good agreement with the hydration P–T  path. Further, the T–X Mg topologies show that hydration of orthopyroxene in the central part of the area (reaction 4) occurred at about 800°  C and c . 5  kbar. Therefore, we conclude that the Botswanan Limpopo Central Zone has suffered isothermal decompression, similar to the Central Zone in South Africa and Zimbabwe, followed by isobaric cooling. The isobaric cooling event in the western (at c . 6  kbar) and central (at c . 5  kbar) parts of the area commenced at nearly the same temperature ( c . 800°  C), and appear to be consistent with a tectonic model that involved westward movement (thrusting) of the Central Zone.  相似文献   
9.
The Central Zone (CZ) of the Limpopo Complex of southern Africais characterized by a complex deformational pattern dominatedby two types of fold geometries: large sheath folds and crossfolds. The sheath folds are steeply SSW-plunging closed structureswhereas the cross folds are north–south-oriented withnear-horizontal fold axes. In the area south of Messina thiscomplexly folded terrain grades continuously towards the southinto a crustal-scale ENE–WSW-trending ductile shear zonewith moderate dip towards the WSW. All sheath folds documentconsistent top-to-the-NE thrust movement of high-grade material.The timing of this shear deformational event (D2) and thus ofthe gneissic fabric (S2) is constrained (at  相似文献   
10.
Resilience is a multidimensional concept that is increasingly used to understand environmental change in hydrological systems. Yet, the current discussion about water governance and resilience remains relatively limited, with resilience typically seen as a normative outcome for governance (i.e., to be resilient against change). Using a theoretical multiplicity approach, we explore how the theories of social-ecological systems (SES), resilience and interactive (water) governance can provide new insights for water governance studies. We propose a resilience–governance framework that captures the partly overlapping but distinct characteristics from these three theories. The framework aims to develop a more nuanced way of using resilience-thinking for water governance, viewing resilience as a function of three capacities (absorptive, adaptive and transformative capacity) and noting the simultaneous existence of three interpretations for resilience (as a property, process and outcome) across different scales. The framework also considers issues of power and equity, which are often missing from resilience framings. We illustrate the framework with two case studies – the Tonle Sap Lake in Cambodia and a small sub-catchment of the Limpopo River Basin in South Africa – to provide two distinct examples of the possibilities of resilient governance. Finally, we consider what the framework suggests more broadly for ongoing discussions around resilience and water governance, including the possibilities for governance to also ‘bounce forward’ – i.e., transform – to a new, improved state. We argue that resilience-thinking may be valuable in understanding governance characteristics and guiding governance processes, in addition to seeing resilience (just) as a normative end-goal. In this way, the article supports an epistemological shift away from focusing on institutional structure, towards capturing the dynamic processes within governing systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号