首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   8篇
  国内免费   16篇
大气科学   28篇
地球物理   47篇
地质学   17篇
海洋学   2篇
天文学   1篇
自然地理   2篇
  2022年   1篇
  2021年   2篇
  2019年   2篇
  2018年   2篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2009年   5篇
  2008年   7篇
  2007年   4篇
  2006年   7篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2001年   3篇
  1999年   10篇
  1998年   6篇
  1997年   8篇
  1996年   9篇
  1995年   7篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
排序方式: 共有97条查询结果,搜索用时 31 毫秒
1.
Rock fracturing by explosive energy: review of state-of-the-art   总被引:1,自引:0,他引:1  
A study of the dynamic rock fracture initiation and propagation due to explosive energy is presented through a detailed state-of-the-art review. Explosive energy dissipation in crushing and fracturing is examined and the various means to enhance the explosive energy utilization for dynamic rock fracturing are reviewed. The study highlights the need for a better understanding of the dynamic fracturing process particularly in the presence of in situ stresses in the rock mass.  相似文献   
2.
ADiagnosticStudyofExplosiveDevelopmentofExtratropicalCycloneoverEastAsiaandWestPacificOcean¥JiaYiqin(贾逸勤)andZhaoSixiong(赵思雄)(...  相似文献   
3.
An extremely large magnitude eruption of the Ebisutoge-Fukuda tephra, close to the Plio-Pleistocene boundary, central Japan, spread volcanic materials widely more than 290,000 km2 reaching more than 300 km from the probable source. Characteristics of the distal air-fall ash (>150 km away from the vent) and proximal pyroclastic deposits are clarified to constrain the eruptive style, history, and magnitude of the Ebisutoge-Fukuda eruption.Eruptive history had five phases. Phase 1 is phreatoplinian eruption producing >105 km3 of volcanic materials. Phases 2 and 3 are plinian eruption and transition to pyroclastic flow. Plinian activity also occurred in phase 4, which ejected conspicuous obsidian fragments to the distal locations. In phase 5, collapse of eruption column triggered by phase 4, generated large pyroclastic flow in all directions and resulted in more than 250–350 km3 of deposits. Thus, the total volume of this tephra amounts over 380–490 km3. This indicates that the Volcanic Explosivity Index (VEI) of the Ebisutoge-Fukuda tephra is greater than 7. The huge thickness of reworked volcaniclastic deposits overlying the fall units also attests to the tremendous volume of eruptive materials of this tephra.Numerous ancient tephra layers with large volume have been reported worldwide, but sources and eruptive history are often unknown and difficult to determine. Comparison of distal air-fall ashes with proximal pyroclastic deposits revealed eruption style, history and magnitude of the Ebisutoge-Fukuda tephra. Hence, recognition of the Ebisutoge-Fukuda tephra, is useful for understanding the volcanic activity during the Pliocene to Pleistocene, is important as a boundary marker bed, and can be used to interpret the global environmental and climatic impact of large magnitude eruptions in the past.  相似文献   
4.
The late Pleistocene San Venanzo maar and nearby Pian di Celle tuff ring in the San Venanzo area of Umbria, central Italy, appear to represent different aspects of an eruptive cycle accompanied by diatreme formation. Approximately 6x106 m3 of mostly lapillisized, juvenile ejecta with lesser amounts of lithics and 1x106 m3 of lava were erupted. The stratigraphy indicates intense explosive activity followed by lava flows and subvolcanic intrusions. The pyroclastic material includes lithic breccia derived from vent and diatreme wall erosion, roughly stratified lapilli tuff deposited by concentrated pyroclastic surge, chaotic scoriaceous pyroclastic flow and inverse graded grain-flow deposits. The key feature of the pyroclastics is the presence of concentric-shelled lapilli generated by accretion around the lithics during magma ascent in the diatreme conduits. The rock types range from kalsilite leucite olivine melilitite lavas and subvolcanic intrusions to carbonatite, phonolite and calcitic melilitite pyroclasts. Juvenile ejecta contain essential calcite whose composition and texture indicate a magmatic origin. Pyroclastic carbonatite activity is also indicated by the presence of carbonatite ash beds. The San Venanzo maar-forming event is believed to have been trigered by fluid-rich carbonatite-phonolite magma. The eruptive centre the moved to the Pian di Celle tuff ring, where the eruption of degassed olivine melilititic magma and late intrusions ended magmatic activity in the area. In both volcanoes the absence of phreatomagmatic features together with the presence of large amounts of primary calcite suggests carbonatite segregation and violent exsolution of CO2 which, flowing through the diatremes, produced the peculiar intrusive pyroclastic facies and triggered explosions.  相似文献   
5.
Pyroclastic deposits from the 1883 eruption of Krakatau are described from areas northeast of the volcano on the islands of Sebesi, Sebuku, and Lagoendi, and the southeast coast of Sumatra. Massive and poorly stratified units formed predominantly from pyroclastic flows and surges that traveled over the sea for distances up to 80 km. Granulometric and lithologic characteristics of the deposits indicate that they represent the complement of proximal subaerial and submarine pyroclastic flow deposits laid down on and close to the Krakatau islands. The distal deposits exhibit a decrease in sorting coefficient, median grain size, and thickness with increasing distance from Krakatau. Crystal fractionation is consistent with the distal facies being derived from the upper part of gravitationally segregated pyroclastic flows in which the relative amount of crystal enrichment and abundance of dense lithic clasts diminished upwards. The deposits are correlated to a major pyroclastic flow phase that occurred on the morning of 27 August at approximately 10 a.m. Energetic flows spread out away from the volcano at speeds in excess of 100 km/h and traveled up to 80 km from source. The flows retained temperatures high enough to burn victims on the SW coast of Sumatra. Historical accounts from ships in the Sunda Straits constrain the area affected by the flows to a minimum of 4x103 km2. At the distal edge of this area the flows were relatively dilute and turbulent, yet carried enough material to deposit several tens of centimeters of tephra. The great mobility of the Krakatau flows from the 10 a.m. activity may be the result of enhanced runout over the sea. It is proposed that the generation of steam at the flow/seawater interface may have led to a reduction in the sedimentation of particles and consequently a delay in the time before the flows ceased lateral motion and became buoyantly convective. The buoyant distal edge of these ash-and steam-laden clouds lifted off into the atmosphere, leading to cooling, condensation, and mud rain.  相似文献   
6.
论祁雨沟式金矿   总被引:4,自引:0,他引:4  
陈衍景  崔毫 《矿产与地质》1992,6(2):103-110
祁雨沟金矿是典型的爆破角砾岩型金矿。系统地论述了其成矿地质背景、矿床地质、地球化学特征、及其成因意义。根据围岩蚀变和矿物包裹体温度、成分的研究,确定了矿床形成的物理化学条件及其各阶段的演变;通过氧同位素研究证明了成矿溶液的来源由早期岩浆水转变为晚期大气降水;用硫、碳和铅同位素组成说明成矿物质的复杂来源。以板块构造理论为指导,建立了矿床的形成模式,并指出找矿方向。  相似文献   
7.
An effective approach to understanding the dynamics of explosive volcanic eruptions and the conduit systems that drive them is through synergy of multiple data sets. Three data sets that lend themselves to ease of integration are seismic, infrasonic and thermal. Although approaches involving these data have been used to record volcanological phenomena since 1862, 1955 and 1965, respectively, their integrated use has only developed since 1999. When combined, these three data sets allow constraint of shallow system geometry and the dynamics of the explosive events that occur within that system. Using Stromboli volcano (Italy) as a case study, we review the complete range of geochemical and geophysical studies that can be applied. In doing so, we aim to show how integration of these diverse studies allows insights into a plumbing system and the dynamics of the eruptive activity that the system feeds. When combined at Stromboli, these data provide constraint of multiple system parameters including chamber depths, gas and magma fluxes, shallow system magma residence times, explosion source depths, and the rise/ejection velocities of ascending gas slugs and ejecta. In turn, these results allow various conduit and eruption dynamic models to be applied and tested.The persistent and repeated mildly explosive events that characterize Stromboli have been modeled in terms of the coalescence of gas within the magma to form large gas slugs that ascend the remaining portion of the conduit to burst at the free surface. Our integrated seismic, infrasonic and thermal data sets indicate that gas coalescence occurs at a depth of ∼260 m, with a typical event frequency of ∼9/h. Infrasonic and thermal data show the explosion source to be located 20-220 m below the vent. Thermal data give emission velocities for the ejected fragments of 8-20 m/s, which converts to gas jet velocities of 23-39 m/s. Tracking these parameters in space and time shows that, although eruptions at Stromboli can be grouped into two characteristic types (simple and complex-each of which characterizes a particular crater, NE and SW, respectively), events within each type show significant short-term variability. The system does, however, appear robust, maintaining its characteristic strombolian eruption style after significant effusive phases and more energetic explosive events.  相似文献   
8.
 A subaqueous volcaniclastic mass-flow deposit in the Miocene Josoji Formation, Shimane Peninsula, is 15–16 m thick, and comprises mainly blocks and lapilli of rhyolite and andesite pumices and non- to poorly vesiculated rhyolite. It can be divided into four layers in ascending order. Layer 1 is an inversely to normally graded and poorly sorted lithic breccia 0.3–6 m thick. Layer 2 is an inversely to normally graded tuff breccia to lapilli tuff 6–11 m thick. This layer bifurcates laterally into minor depositional units individually composed of a massive, lithic-rich lower part and a diffusely stratified, pumice-rich upper part with inverse to normal grading of both lithic and pumice clasts. Layer 3 is 2.5–3 m thick, and consists of interbedded fines-depleted pumice-rich and pumice-poor layers a few centimeters thick. Layer 4 is a well-stratified and well-sorted coarse ash bed 1.5–2 m thick. The volcaniclastic deposit shows internal features of high-density turbidites and contains no evidence for emplacement at a high temperature. The mass-flow deposit is extremely coarse-grained, dominated by traction structures, and is interpreted as the product of a deep submarine, explosive eruption of vesicular magma or explosive collapse of lava. Received: 10 January 1996 / Accepted: 23 February 1996  相似文献   
9.
Besides their common use in atmospheric studies, Doppler radars are promising tools for the active remote sensing of volcanic eruptions but were little applied to this field. We present the observations made with a mid-power UHF Doppler radar (Voldorad) during a 7-h Strombolian eruption at the SE crater of Mount Etna on 11–12 October 1998. Main characteristics of radar echoes are retrieved from analysis of Doppler spectra recorded in the two range gates on either side of the jet axis. From the geometry of the sounding, the contribution of uprising and falling ejecta to each Doppler spectrum can be discriminated. The temporal evolution of total power backscattered by uprising targets is quite similar to the temporal evolution of the volcanic tremor and closely reproduces the overall evolution of the eruption before, during and after its paroxysm. Moreover, during the sharp decrease of eruptive activity following the paroxysm, detailed analysis of video (from camera recording), radar and seismic measurements reveals that radar and video signals start to decrease simultaneously, approximately 2.5 min after the tremor decline. This delay is interpreted as the ascent time through a magma conduit of large gas slugs from a shallow source roughly estimated at about 500 m beneath the SE crater. Detailed analysis of eruptive processes has been also made with Voldorad operating in a high sampling rate mode. Signature of individual outburst is clearly identified on the half part of Doppler spectra corresponding to rising ejecta: temporal variations of the backscattered power exhibit quasi periodic undulations, whereas the maximum velocity measured on each spectrum displays a sharp peak at the onset of each outburst followed by a slow decay with time. Periodicity of power variations (between 3.8 and 5.5 s) is in agreement with the occurrence of explosions visually observed at the SE vent. Maximum vertical velocities of over 160 m s–1 were measured during the paraoxysmal stage and the renewed activity. Finally, by using a simplified model simulating the radar echoes characteristics, we show that when Voldorad is operating in high sampling rate mode, the power and maximum velocity variations are directly related to the difference in size and velocity of particles crossing the antenna beam.Editorial responsibility: A. Woods  相似文献   
10.
Aspects of two qualitative models of Enceladus’ dust plume—the so-called “Cold Faithful” [Porco, C.C., et al., 2006. Cassini observes the active south pole of Enceladus. Science 311, 1393-1401; Ingersoll, A.P., et al., 2006. Models of the Enceladus plumes. In: Bulletin of the American Astronomical Society, vol. 38, p. 508] and “Frigid Faithful” [Kieffer, S.W., et al., 2006. A clathrate reservoir hypothesis for Enceladus’ south polar plume. Science 314, 1764; Gioia, G., et al., 2007. Unified model of tectonics and heat transport in a Frigid Enceladus. Proc. Natl. Acad. Sci. 104, 13578-13591] models—are analyzed quantitatively. The former model assumes an explosive boiling of subsurface liquid water, when pressure exerted by the ice crust is suddenly released due to an opening crack. In the latter model the existence of a deep shell of clathrates below Enceladus’ south pole is conjectured; clathrates can decompose explosively when exposed to vacuum through a fracture in the outer icy shell. For the Cold Faithful model we estimate the maximal velocity of ice grains, originating from water splashing in explosive boiling. We find that for water near the triple point this velocity is far too small to explain the observed plume properties. For the Frigid Faithful model we consider the problem of momentum transfer from gas to ice particles. It arises since any change in the direction of the gas flow in the cracks of the shell requires re-acceleration of the entrained grains. While this effect may explain the observed speed difference of gas and grains if the gas evaporates from triple point temperature (273.15 K) [Schmidt, J., et al., 2008. Formation of Enceladus dust plume. Nature 451, 685], the low temperatures of the Frigid Faithful model imply a too dilute vapor to support the observed high particle fluxes in Enceladus’ plume.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号