首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
测绘学   1篇
大气科学   1篇
地球物理   3篇
地质学   2篇
自然地理   3篇
  2023年   1篇
  2021年   2篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2007年   1篇
  2005年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
Remote classification of land-use/land-cover (LULC) types in Brazil's Cerrado ecoregion is necessary because knowledge of Cerrado LULC is incomplete, sources of inaccuracy are unknown, and high-resolution data are required for the validation of moderate-resolution LULC maps. The aim of this research is to discriminate between Cerrado and agriculture using high-resolution Landsat 7 ETM+ imagery for the western region of Bahia state in northeastern Brazil. The Maximum Likelihood Classification (MLC) and Spectral Angle Mapper (SAM) algorithms were applied to a ~3000 km2 subset, yielding comparable classification accuracies. The panchromatic band was reserved for validation. User's and producer's accuracies were highest for non-irrigated agriculture (~94%) but lower for Cerrado Lato Sensu (89%). Classification errors likely resulted from spatial and spectral characteristics of particular classes (e.g. riparian forest and burned) and overestimation of other classes (e.g. Eucalyptus and water). Manual misinterpretation of validation data may have also led to lower reported classification accuracies.  相似文献   
2.
The Pandeiros wetland is a high biodiversity ecosystem located within a semiarid region of the Cerrado biome, a neotropical savanna. This large wetland is of key importance for ecological and hydrological balance in central Brazil and for the conservation of the Cerrado fauna and flora. In this study, we present the first palaeoecological investigation of the Pandeiros wetland based on pollen analysis of a palm swamp sediment core encompassing the Late Holocene. Our results show that the wetland was subject to multicentennial-scale oscillations in water availability during the Late Holocene; in particular, higher local humidity was documented between 4100 and 3100 cal a bp and from 2600 to 1000 cal a bp , and two events of drier local conditions occurred at approximately 2900 and 900 cal a bp. Our results also indicate a general decreasing trend in arboreal density in the Pandeiros River Basin from the beginning of the Late Holocene to the present, with the greatest expansion of dry forest occurring between 3600 and 3100 cal a bp.  相似文献   
3.
In this study, the Chironomidae assemblages were studied in order to test the following hypotheses: a) mesohabitat type and substrate complexity affect the richness, abundance, and composition of the fauna; b) mesohabitat type is a good predictor for Chironomidae composition. To test the hypotheses, experiments were carried out in two mesohabitats (riffle and pool) using two substrate complexities (high and low) in 12 streams from Central Brazil. The mesohabitat type and substrate complexity did not affect the richness and abundance of the local fauna. The mesohabitat affected the faunistic composition. The assemblages of riffles and pools were distinct. Indicator Species Analysis showed that Paratendipes sp., Polypedilum sp. 2, Pentaneura sp., Rheotanytarsus sp. 1, Corynoneura sp. 2, Cricotopus sp. 2, Lopescladius sp., Nanocladius sp. 2, Parametriocnemus sp., and Thienemanniella sp. had preference for riffles and Chironomus sp., Ablabesmyia sp. 1, Ablabesmyia sp. 2, Djalmabatista sp., Fittkauimyia sp., and Labrundinia sp. for pools. Our results highlight the importance of physical instream variability on fauna structure, suggesting that habitat homogenization due to anthropic action may cause drastic effects on the diversity of chironomids and, probably, other benthic macroinvertebrates. Therefore, maintaining instream morphology, including the different mesohabitats, is fundamental for biodiversity conservation in streams.  相似文献   
4.
The global trade of agricultural commodities has profound social-ecological impacts, from potentially increasing food availability and agricultural efficiency, to displacing local communities, and to incentivizing environmental destruction. Supply chain stickiness, understood as the stability in trading relationships between supply chain actors, moderates the impacts of agricultural commodity production and the possibilities for supply-chain interventions. However, what factors determine stickiness, that is, how and why farmers, traders, food processors, and consumer countries, develop and maintain trading relationships with specific producing regions, remains unclear. Here, we use data on the Brazilian soy supply chain, a mixed methods approach based on extensive actor-based fieldwork, and an explanatory regression model, to identify and explore the factors that influence stickiness between places of production and supply chain actors. We find four groups of factors to be important: economic incentives, institutional enablers and constraints, social and power dimensions, and biophysical and technological conditions. Among the factors we explore, surplus capacity in soy processing infrastructure, (i.e., crushing and storage facilities) is important in increasing stickiness, as is export-oriented production. Conversely, volatility in market demand expressed by farm-gate soy prices and lower land-tenure security are key factors reducing stickiness. Importantly, we uncover heterogeneity and context-specificity in the factors determining stickiness, suggesting tailored supply-chain interventions are beneficial. Understanding supply chain stickiness does not, in itself, provide silver-bullet solutions to stopping deforestation, but it is a crucial prerequisite to understanding the relationships between supply chain actors and producing regions, identifying entry points for supply chain sustainability interventions, assessing the effectiveness of such interventions, forecasting the restructuring of trade flows, and considering sourcing patterns of supply chain actors in territorial planning.  相似文献   
5.
Ferralsols are characterized by poorly-defined horizons, weak macrostructure and strong development of a fine granular structure comprising subangular micro-aggregates. In this study, the morphological and physical modifications caused by earthworm activity in a clayey ferralsol were analysed. After describing soil structures, undisturbed samples were taken for evaluating aggregates and determining clod bulk density and particle density. Soil water retention properties were measured and an inventory of soil invertebrate macrofauna was created. The structural and porous transformations were due to aggregates created by earthworm activity. Changes in bulk density can be associated with pore modifications caused by a change in the proportions of aggregate types, and a notable reduction of total porosity was measured, tending to increase soil volume with dense aggregates. Structural modifications affected the topsoil down to 0.5 m and water retention between −1 and −33 kPa, the principal water compartment of these soils.  相似文献   
6.
The decomposition of plant litter is a fundamental ecological process in small forest streams. Litter decomposition is mostly controlled by litter characteristics and environmental conditions, with shredders playing a critical role. The aim of this study was to evaluate the effect of leaf species (Maprounea guianensis and Inga laurina, which have contrasting physical and chemical characteristics) and water nutrient enrichment (three levels) on leaf litter chemical characteristics and fungal biomass, and subsequent litter preference and consumption by Phylloicus sp. (a typical shredder in tropical streams). Maprounea guianensis leaves had lower lignin and nitrogen (N) concentrations, higher polyphenols concentration and lower lignin:N ratio than I. laurina leaves. Phosphorus concentrations were higher for both leaf species incubated at the highest water nutrient level. Fungal biomass was higher on M. guianensis than on I. laurina leaves, but it did not differ among nutrient levels. Relative consumption rates were higher when shredders fed on M. guianensis than on I. laurina leaves, due to the lower lignin:N ratio and higher fungal biomass of M. guianensis. Consumption rates on M. guianensis leaves were higher for those exposed to low water nutrient levels than for those exposed to moderate water nutrient levels. Feeding preferences by shredders were not affected by leaf species or nutrient level. The low carbon quality on I. laurina leaves makes it a less attractive substrate for microbial decomposers and a less palatable resource for shredders. Changes in litter input characteristics may be more important than short-term nutrient enrichment of stream water on shredder performance and ecosystem functioning.  相似文献   
7.
The main objective of our study was to provide consistent information on land cover changes between the years 1990 and 2010 for the Cerrado and Caatinga Brazilian seasonal biomes. These areas have been overlooked in terms of land cover change assessment if compared with efforts in monitoring the Amazon rain forest. For each of the target years (1990, 2000 and 2010) land cover information was obtained through an object-based classification approach for 243 sample units (10  km × 10  km size), using (E)TM Landsat images systematically located at each full degree confluence of latitude and longitude. The images were automatically pre-processed, segmented and labelled according to the following legend: Tree Cover (TC), Tree Cover Mosaic (TCM), Other Wooded Land (OWL), Other Land Cover (OLC) and Water (W). Our results indicate the Cerrado and Caatinga biomes lost (gross loss) respectively 265,595 km2 and 89,656 km2 of natural vegetation (TC + OWL) between 1990 and 2010. In the same period, these areas also experienced gain of TC and OWL. By 2010, the percentage of natural vegetation cover remaining in the Cerrado was 47% and in the Caatinga 63%. The annual (net) rate of natural vegetation cover loss in the Cerrado slowed down from −0.79% yr−1 to −0.44% yr−1 from the 1990s to the 2000s, while in the Caatinga for the same periods the rate increased from −0.19% yr−1 to −0.44% yr−1. In summary, these Brazilian biomes experienced both loss and gains of Tree Cover and Other Wooded Land; however a continued net loss of natural vegetation was observed for both biomes between 1990 and 2010. The average annual rate of change in this period was higher in the Cerrado (−0.6% yr−1) than in the Caatinga (−0.3% yr−1).  相似文献   
8.
The Cerrado , the tropical savanna covering 22% of Brazil's territory, or approximately 1.783 million km2, has suffered significant human impacts during the past three decades. This paper re-examines estimates of Cerrado vegetation change dynamics using high-resolution satellite remote sensing data from an area of interest extracted from eastern Mato Grosso State. This region has undergone a high degree of typical agricultural development since the early 1970s. Results indicate significant loss of original vegetation as well as high levels of regeneration, suggesting Cerrado vegetation may be more resilient to human impacts than catastrophic estimations suggest. The paper concludes with a critical review of Cerrado land-cover change studies and the implications of evidence for vegetation regeneration, land-cover dynamism and land-use intensification, paying particular attention to spatial scale and research methods. The discussion concludes that Cerrado land-cover change studied at a higher resolution and larger scales (smaller area) is required to represent more effectively the complexity of land conversion for better assessment of human impacts and environmental policy.  相似文献   
9.
We assessed leaf breakdown of five native riparian species from Brazilian Cerrado (Myrcia guyanensis, Ocotea sp., Miconia chartacea, Protium brasiliense, and Protium heptaphyllum), incubated in single and mixed species packs in two headwater streams with different physico-chemical properties in the Espinhaço Mountain range (Southeastern Brazil). Leaves were placed in plastic litter bags (15 cm×20 cm, 10 mm mesh size) and the experiments were carried out during the dry seasons of 2003 and 2004. Leaf nitrogen and phosphorus contents were similar in all species, but polyphenolic contents were different (P<0.001). M. guyanensis showed higher polyphenolics content (8.48% g−1 dry mass) and leaf toughness. Individually, higher breakdown rates were found in M. guyanensis at Indaiá stream (k=0.0063±0.0005 d−1) and in Ocotea sp. at Garcia stream (k=0.0088±0.0006 d−1). However, P. brasiliense and P. heptaphyllum showed lower breakdown rates at Indaiá and Garcia streams (Indaiá: k=0.0020±0.0002 and 0.0019±0.0001 d−1; Garcia: k=0.0042±0.0001 and 0.0040±0.0002 d−1). Single and mixed breakdown processes of each species were not statistically different on both streams. However, all species showed higher breakdown rates at Garcia stream (P<0.01). These results suggest that leaf breakdown is not altered when litter benthic patches are composed by a mixture of species in the same proportions that they occur on riparian leaf falls.  相似文献   
10.
Spillover effect offsets the conservation effort in the Amazon   总被引:1,自引:0,他引:1  
Diverse conservation efforts have been expanding around the globe, even under the stress of increasing agricultural production. A striking example is the supply-chain agreements put upon the Amazon forest which had reduced deforestation by 80% from the early 2000s (27,772 km2) to 2015 (6207 km2). However, evaluation of these conservation efforts usually focused on the impacts within the Amazon biome only, while the effects that spill over to other areas (e.g., displacement of environmental pressure from one area to another) were rarely considered. Ignoring spillover effects may lead to biased or even wrong conclusions about the effectiveness of these conservation efforts because the hidden cost outside the target area of conservation may offset the achievement within it. It is thus important to assess the spillover effects of these supply-chain agreements. In this study, we used the two supply-chain agreements (i.e., Soy Moratorium and zero-deforestation beef agreement) implemented in the Amazon biome as examples and evaluated their spillover effects to the Cerrado. To achieve a holistic evaluation of the spillover effects, we adopted the telecoupling framework in our analysis. The application of the telecoupling framework includes the interactions between distant systems and extends the analytical boundaries beyond the signatory areas, which fill the gap of previous studies. Our results indicate that the supply-chain agreements have significantly reduced deforestation by half compared to projections within the sending system (i.e., Pará State in the Amazon, which exports soybeans and other agricultural products), but at the cost of increasing deforestation in the spillover system (i.e., a 6.6 time increase in Tocantins State of the Cerrado, where deforestation was affected by interactions between the Amazon and other places). Our study emphasizes that spillover effects should be considered in the evaluation and planning of conservation efforts, for which the telecoupling framework works as a useful tool to do that systematically.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号